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Introduction 

Congratulations! Whether you are new to HP calculators or an experienced 

user, you will find the HP-15C a powerful and valuable calculating tool. 

The HP-15C provides: 

 448 bytes of program memory (one or two bytes per instruction) and 

sophisticated programming capability, including conditional and 

unconditional branching, subroutines, flags, and editing. 

 Four advanced mathematics capabilities: complex number calculations, 

matrix calculations, solving for roots, and numerical integration. 

 Direct and indirect storage in up to 67 registers. 

This handbook is written for you, regardless of your level of expertise. 

The beginning part covers all the basic functions of the HP-15C and how to 

use them. The second part covers programming and is broken down into 

three subsections – The Mechanics, Examples, and Further Information – in 

order to make it easy for users with varying backgrounds to find the 

information they need. The last part describes the four advanced 

mathematics capabilities. 

Before starting these sections, you may want to gain some operating and 

programming experience on the HP-15C by working through the 

introductory material, The HP-15C: A Problem Solver, on page 12. 

The various appendices describe additional details of calculator operation, 

as well as warranty and service information. The Function Summary and 

Index and the Programming Summary and Index at the back of this manual 

can be used for quick reference to each function key and as a handy page 

reference to more comprehensive information inside the manual. 

Also available from Hewlett-Packard is the HP-15C Advanced Functions 

Handbook, which provides applications and technical descriptions for the 

root-solving, integration, complex number, and matrix functions. 

Note: You certainly do not need to read every part of the manual 

before delving into the HP-15C Advanced Functions if you are 

already familiar with HP calculators. The use of _ and f 

requires a knowledge of HP-15C programming. 
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The HP-15C: 

A Problem Solver 

The HP-15C Advanced Programmable Scientific Calculator is a powerful 

problem solver, convenient to carry and easy to hold. Its continuous 

memory retains data and program instructions indefinitely until you choose 

to reset it. Though sophisticated, it requires no prior programming 

experience or knowledge of programming languages to use it. 

The new HP-15C is a modern re-release of the original HP-15C introduced 

in 1982. While the battery life of the new version is now estimated to be 1 

year for normal use, the calculator is now at least 150 times faster than the 

original. The low-power indicator gives you plenty of warning before the 

calculator stops functioning. 

The HP-15C also conserves power by automatically shutting its display off 

if it is left inactive for a few minutes. But don't worry about losing data – 

any information contained in the HP-15C is saved by Continuous Memory. 

A Quick Look at v 

Your Hewlett-Packard calculator uses a unique operating logic, represented 

by the v key, that differs from the logic in most other calculators. 

You will find that using v makes nested and complicated 

calculations easier and faster to work out. Let's get acquainted with how this 

works. 

For example, let's look at the arithmetic functions. First we have to get the 

numbers into the machine. Is your calculator on? If not, press =. Is the 

display cleared? To display all zeros, you can press | ` that is, press 

|, then −.
*
 To perform arithmetic, key in the first number, press v 

to separate the first number from the second, then key in the second number 

and press +, -, * or ÷. The result appears immediately after you 

press any numerical function key. 

                                                           
* If you have not used an HP calculator before, you will notice that most keys have three labels. To use the 

primary function – the one printed in white on top of the key – just press that key. For those printed in gold 

or blue, press the gold ´ key or the blue | key first.  
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The display format used in this handbook is • 4 (the decimal point is 

―fixed‖ to show four decimal places) unless otherwise mentioned. If your 

calculator does not show four decimal places, you may want to press 

´• 4 to match the displays in the examples. 

Manual Solutions 

Run through the following two-number calculations. It is not necessary to 

clear the calculator between problems. If you enter a digit incorrectly, press 

− to undo the mistake, then key in the correct number. 

To Compute Keystrokes Display 

9 - 6 = 3 9 v 6 ­ 3.0000 

9 × 6 = 54 9 v 6 * 54.0000 

9 ÷ 6 = 1.5 9 v 6 ÷ 1.5000 

9
6
 = 531,441 9 v 6 Y 531,441.0000 

Notice that in the four examples: 

 Both numbers are in the calculator before you press the function key. 

 v is used only to separate two numbers that are keyed in one 

after the other. 

 Pressing a numeric function key, in this case ­ * ÷ or Y, 

executes the function immediately and displays the result. 

To see the close relationship between manual and programmed problem 

solving, let's first calculate the solution to a problem manually, that is, from 

the keyboard. Then we'll use a program to calculate the solution to the same 

problem with different data. 
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The time an object takes to fall to the ground (ignoring air friction) is given 

by the formula 

g

2h
t  , 

where  t = time in seconds, 

h = height in meters, 

g = the acceleration due to gravity, 

9.8 m/s
2
. 

Example: Compute the time taken by a 

stone falling from the top of the Eiffel 

Tower (300.51 meters high) to the earth. 

Keystrokes Display  

300.51 v 300.5100 Enter h. 

2 * 601.0200 Calculates 2h. 

9.8 ÷ 61.3286 (2h) /g. 

¤ 7.8313 Falling time, seconds. 

Programmed Solutions 

Suppose you wanted to calculate falling times from various heights. The 

easiest way is to write a program to cover all the constant parts of a 

calculation and provide for entry of variable data. 

Writing the Program. The program is similar to the keystroke sequence 

you used above. A label is useful to define the beginning of a program, and 

a return is useful to mark the end of a program. Also, the program must 

accommodate the entry of new data. 

Loading the Program. You can load a program for the above problem by 

pressing the following keys in sequence. (The display shows information 

which you can ignore for now, though it will be useful later.) 
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Keystrokes Display 

|¥ 000- Sets HP-15C to Program 

mode. (PRGM 

annunciator on.) 

´ CLEAR M 000- Clears program memory. 

(This step is optional 

here.) 

´bA 001-42,21,11 Label "A" defines the 

beginning of the 

program. 

2 002-       2  

* 003-      20  

9 004-       9  

  The same keys you 

  pressed to solve the  

. 005-      48 problem manually. 

8 006-       8  

÷ 007-      10  

¤ 008-      11  

|n 009-   43 32 ―Return‖ defines the end 

of the program. 

|¥ 7.8313 Switches to Run mode. 

(No PRGM 

annunciator.) 

Running the Program. Enter the following information to run the 

program. 

Keystrokes Display  

300.51 300.51 Height of the Eiffel Tower. 

´A 7.8313 Falling time you calculated 

earlier. 

1050 ´A 14.6385 The time (seconds) for a stone 

to reach the ground after release 

from a blimp 1050 m high. 
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With this program loaded, you can quickly calculate the time of descent of 

an object from different heights. Simply key in the height and press 

´A. Find the time of descent for objects released from heights of    

100 m, 2 m, 275 m, and 2,000 m. 

The answers are: 4.5175 s; 0.6389 s; 7.4915 s; and 20.2031 s. 

That program was relatively easy. You will see many more aspects and 

details of programming in part II. For now, turn the page to take an in-depth 

look at some of the calculator's important operating basics. 
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Section 1 

Getting Started 

Power On and Off 

The = key turns the HP-15C on and off.
*
 To conserve power, the 

calculator automatically turns itself off after a few minutes of inactivity. 

Keyboard Operation 

Primary and Alternate Functions 

Most keys on your HP-15C perform one primary and two alternate, shifted 

functions. The primary function of any key is indicated by the character(s) 

on the face of the key. The alternate functions are indicated by the gold 

characters printed above the key and the blue characters printed on the 

lower face of the key. 

 To select the primary function printed on 

the face of a key, press only that key. For 

example: ÷. 

 To select the alternate function printed in 

gold or blue, press the like-colored prefix 

key (´ or |) followed by the function 

key. For example: ´ _; | 
£. 

Throughout this handbook, we will observe certain conventions in referring 

to alternate functions. References to the function itself will appear as just the 

key name in a box, such as ―the W function.‖ References to the use of 

the key will include the prefix key, such as ―press | W.‖ References 

to the four gold functions printed under the bracket labeled ―CLEAR‖ will 
be preceded by the word ―CLEAR‖, such as "the CLEAR Q function,‖ 

or ―press ´ CLEAR M.‖ 

                                                           
* Note that the = key is lower than the other keys to help prevent its being pressed inadvertently. 
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Notice that when you press the ´ or | 

prefix key, an f or g annunciator appears 

and remains in the display until a function 

key is pressed to complete the sequence. 

Prefix Keys 

A prefix key is any key which must precede another key to complete the 

key sequence for a function. Certain functions require two parts: a prefix 

key and a digit or other key. For your reference, the prefix keys are: 

" ^ • G f > i O 

m ´ | P I l F T 

s ? t H b < _ X 

If you make a mistake while keying in a prefix for a function, press ´ 

CLEAR u to cancel the error. The CLEAR u key is also used 

to show the mantissa of a displayed number, so all 10 digits of the number 

in the display will appear for a moment after the u key is pressed. 

Changing Signs 

Pressing “ (change sign) will change the sign (positive or negative) of 

any displayed number. To key in a negative number, press “ after its 

digits have been keyed in. 

Keying in Exponents 

‛ (enter exponent) is used when keying in a number with an exponent. 

First key in the mantissa, then press ‛ and key in the exponent. 

For a negative exponent press “ after keying in the exponent.
*
 For 

example, to key in Planck's constant (6.6262×10
-34

 Joule-seconds) and 

multiply it by 50: 

                                                           
* “ may also be pressed after ‛ and before the exponent, with the same result (unlike the mantissa, 

where digit entry must precede “). 

0.0000 
 f 
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Keystrokes Display  

6.6262 6.6262  

‛ 6.6262    00 The 00 prompts you to 

key in the exponent. 

3 6.6262    03 (6.6262×10
3
). 

4 6.6262    34 (6.6262×10
34

). 

“ 6.6262   -34 (6.6262×10
-34

). 

v 6.6262   -34 Enters number. 

50 * 3.3131   -32 Joule-seconds. 

Note: Decimal digits from the mantissa that spill into the exponent 

field will disappear from the display when you press ―, but will be 

retained internally. 

To prevent a misleading display pattern, ‛ will not operate with a 

number having more than seven digits to the left of the radix mark (decimal 

point), nor with a mantissa smaller than 0.000001. To key in such a number, 

use a form having a greater exponent value (whether positive or negative). 

For example, 123456789.8×10
23

 can be keyed in as 1234567.898×10
25

; 

0.00000025×10
-15

 can be keyed in as 2.5×10
-22

. 

The “CLEAR” Keys 

Clearing means to replace a number with zero. The clearing operations in 

the HP-15C are (the table is continued on the next page): 

 

Clearing Sequence Effect 

|` Clears display (X-register). 

−  

In Run mode: Clears last digit or entire display. 

In Program mode: Deletes current instruction. 

´ CLEAR ∑ Clears statistics storage registers, display, 

and the memory stack (described in 

section 3). 
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Clearing Sequence Effect 

 ´ CLEAR M  

In Run mode: Repositions program memory to line 000. 

In Program mode: Deletes all program memory. 

 ´ CLEAR Q Clears all data storage registers. 

 ´ CLEAR u* Clears any prefix from a partially entered 

key sequence. 

* Also temporarily displays the mantissa. 

Display Clearing: ` and − 

The HP-15C has two types of display clearing operations: ` (clear X) 

and − (back arrow). 

In Run mode: 
 

 ` clears the display to zero. 

 − deletes only the last digit in the display if digit entry has not 

been terminated by v or most other functions. You can then 

key in a new digit or digits to replace the one(s) deleted. If digit entry 

has been terminated, then − acts like `. 

Keystrokes Display  

12345 12,345 Digit entry not terminated. 

− 1,234 Clears only the last digit. 

9 12,349  

¤ 111.1261 Terminates digit entry. 

− 0.0000 Clears all digits to zero. 

In Program mode: 

 ` is programmable: it is stored as a programmed instruction, 

and will not delete the currently displayed instruction. 

 − is not programmable, so it can be used for program correction. 

Pressing − will delete the entire instruction currently displayed. 
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Calculations 

One-Number Functions 

A one-number function performs an operation using only the number in the 

display. To use any one-number function, press the function key after the 

number has been placed in the display. 

Keystrokes Display 

45 45 

|o 1.6532 

Two-Number Functions and v 

A two-number function must have two numbers present in the calculator 

before executing the function. +, -, * and ÷ are examples of 

two-number functions. 

Terminating Digit Entry. When keying in two numbers to perform an 

operation, the calculator needs a signal that digit entry is terminated for the 

first number. This is done by pressing v to separate the two numbers. 

If, on the other hand, one of the numbers is already in the calculator as the 

result of a previous operation, you do not need to use the v key. All 

functions except the digit entry keys themselves
*
 have the effect of 

terminating digit entry. 

Notice that, regardless of the number, a decimal point always appears and a 

set number of decimal places are displayed when you terminate digit entry 

(as by pressing v). 

Chain Calculations. In the following calculations, notice that: 

 The v key is used only for separating the sequential entry of 

two numbers. 

 The operator is keyed in only after both operands are in the calculator. 

 The result of any operation may itself become an operand. Such 

intermediate results are stored and retrieved on a last-in, first-out 

basis. New digits keyed in following an operation are treated as a new 

number. 

                                                           
* The digit keys, +, “, ‛, and −. 
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Example: Calculate (9 + 17  4) ÷ 4. 

Keystrokes Display  

9 v 9.0000 Digit entry terminated. 

17 + 26.0000 (9 + 17). 

4 - 22.0000 (9 + 17 – 4). 

4 ÷ 5.5000 (9 + 17 – 4) ÷ 4. 

Even more complicated problems are solved in the same manner-using 

automatic storage and retrieval of intermediate results. It is easiest to work 

from the inside of parentheses outwards, just as you would with calculations 

on paper. 

Example: Calculate (6 + 7) × (9  3) 

Keystrokes Display  

6 v 6.0000 First solve for the 

intermediate result of (6 + 7). 

7 + 13.0000  

9 v 9.0000 Then solve for the 

intermediate result of (9  3). 

3 - 6.0000  

* 78.0000 Then multiply the 

intermediate results together 

(13 and 6) for the final 

answer. 

Try your hand at the following problems. Each time you press v or a 
function key in a calculation, the preceding number is saved for the next 
operation. 

    (16 × 38) – (13 × 11) = 465.0000 

4 × (17 – 12) ÷ (10 – 5) = 4.0000 

      23
2
 – (13 × 9) + 1/7 = 412.1429 

       5998.0)]7.05.12()8.04.5[( 2   
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Section 2 

Numeric Functions 

This section discusses the numeric functions of the HP-15C (excluding 

statistics and advanced functions). The nonnumeric functions are discussed 

separately (digit entry in section 1, stack manipulation in section 3, and 

display control in section 5). 

The numeric functions of the HP-15C are used in the same way whether 

executed from the keyboard or in a program. Some of the functions (such as 

a) are, in fact, primarily of interest for programming. 

Remember that the numeric functions, like all functions except digit entry 

functions, automatically terminate digit entry. This means a numeric 

function does not need to be preceded or followed by v. 

Pi 

Pressing | $ places the first 10 digits of π into the calculator. $ 

does not need to be separated from other numbers by v. 

Number Alteration Functions 

The number alteration functions act upon the number in the display 

(X-register). 

Integer Portion. Pressing | ‘ replaces the number in the display 

with the nearest integer of lesser or equal magnitude. 

Fractional Portion. Pressing ´ q replaces the number in the display 

with its fractional part (that is, the difference between the number and its 

integer part). 

Rounding. Pressing | & rounds all 10 internally held digits of the 

mantissa of the displayed value to the number of digits specified by the 

current •, i, or ^ display format. 

Absolute Value. Pressing | a yields the absolute value of the 

number in the display. 
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Keystrokes Display  

123.4567 |‘  123.0000  

|K “ |‘ -123.0000 Reversing the sign does 

not alter digits. 

|K ´q -0.4567  

1.23456789 “   

|& -1.2346  

´ CLEAR u 

(release) 

 1234600000 Temporarily displays all 

-1.2346 digits in the mantissa. 

|a  1.2346  

One-Number Functions 

One-number math functions in the HP-15C operate only upon the number in 

the display (X-register). 

General Functions 

Reciprocal. Pressing ∕ calculates the reciprocal of the number in the 

display. 

Factorial and Gamma. Pressing ´ ! calculates the factorial of the 

displayed value, where x is an integer 0≤x≤69. 

You can also use ! to calculate the Gamma function, Γ(x), used in 

advanced mathematics and statistics. Pressing ´ ! calculates Γ(x + 1), 

so you must subtract 1 from your initial operand to get Γ(x). For the Gamma 

function, x is not restricted to nonnegative integers. 

Square Root. Pressing ¤ calculates the positive square root of the 

number in the display. 

Squaring. Pressing | x calculates the square of the number in the 

display. 

 

Keystrokes Display  

25 ∕ 0.0400  

8 ´ ! 40,320.0000 Calculates 8! or Γ(9). 

3.9 ¤ 1.9748  

12.3 | x 151.2900  
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Trigonometric Operations 

Trigonometric Modes. The trigonometric functions operate in the 

trigonometric mode you select. Specifying a trigonometric mode does not 

convert any number already in the calculator to that mode; it merely tells 

the calculator what unit of measure (degrees, radians, or grads) to assign a 

number for a trigonometric function. 

Pressing | D sets Degrees mode. No annunciator appears in the 

display. Degrees are in decimal, not minutes-seconds form. 

Pressing | R sets Radians mode. The RAD annunciator appears in 

the display. In Complex mode, all functions (except : and ;) assume 

values are in radians, regardless of the trigonometric annunciator displayed. 

Pressing | g sets Grads mode. The GRAD annunciator appears in 

the display. 

Continuous Memory will maintain the last trigonometric mode selected. At 

"power up" (initial condition or when Continuous Memory is reset), the 

calculator is in Degrees mode, 

Trigonometric Functions. Given x in the display (X-register): 

 

Pressing Calculates 

[ sine of x 

|, arc sine of x 

\ cosine of x 

|{ arc cosine of x 

] tangent of x 

|/ arc tangent of x 

Before executing a trigonometric function, be sure that the calculator is set 

to the desired trigonometric mode (Degrees, Radians, or Grads). 

Time and Angle Conversions 

Numbers representing time (hours) or angles (degrees) can be converted by 

the HP-15C between a decimal-fraction and a minutes-seconds format: 
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Hours.Decimal Hours  Hours.Minutes Seconds Decimal Seconds 

(H.h)  (H.MMSSs) 

Degrees.Decimal Hours  Degrees.Minutes Seconds Decimal Seconds 

(D.d)  (D.MMSSs) 

Hours/Degrees-Minutes-Seconds Conversion. Pressing ´ h 

converts the number in the display from a decimal hours/degrees format to 

an hours/degree-minutes-seconds-decimal seconds format. 

For example, press ´ h to convert 

 
Press ´ u to display the value to all possible decimal places: 

 

Decimal Hours (or Degrees) Conversion. Pressing | À converts the 

number in the display from an hours/degrees-minutes-seconds-decimal 

seconds format to a decimal hours/degrees format. 

Degrees/Radians Conversions 

The d and r functions are used to convert angles to degrees 

or radians (D.dR.r). The degrees must be expressed as decimal numbers, 

and not in a minutes-seconds format. 

Keystrokes Display  

40.5 ´ r 0.7069 Radians. 

| d 40.5000 40.5 degrees (decimal fraction). 

1 1 4 0 4 2 0 0 0 0  

to the hundred-thousandth of a second. 

seconds 

hours 

1 . 1 4 0 4 1.2 3 4 5 

minutes 

hours 

to 
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Logarithmic Functions 

Natural Logarithm. Pressing |Z calculates the natural logarithm of 

the number in the display; that is, the logarithm to the base e. 

Natural Antilogarithm. Pressing ' calculates the natural antilogarithm 

of the number in the display; that is, raises e to the power of that number. 

Common Logarithm. Pressing | o calculates the common 

logarithm of the number in the display; that is, the logarithm to the base 10. 

Common Antilogarithm. Pressing @ calculates the common 

antilogarithm of the number in the display; that is, raises 10 to the power of 

that number. 

Keystrokes Display  

45 |Z 3.8067 Natural log of 45. 

3.4012 ' 30.0001 Natural antilog of 3.4012. 

12.4578 | o 1.0954 Common log of 12.4578. 

3.1354 @ 1,365.8405 Common antilog of 

3.1354. 

Hyperbolic Functions 

Given x in the display (X-register): 

 

Pressing Calculates 

´P[ hyperbolic sine of x 

|H[ inverse hyperbolic sine of x 

´P\ hyperbolic cosine of x 

|H\ inverse hyperbolic cosine of x 

´P] hyperbolic tangent of x 

|H] inverse hyperbolic tangent of x 
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Two-Number Functions 

The HP-15C performs two-number math functions using two values entered 

sequentially into the display. If you are keying in both numbers, remember 

that they must be separated by v or any other function – like | 

‘ or ∕ – that terminates digit entry. 

For a two-number function, the first value entered is considered the y-value 

because it is placed into the Y-register for memory storage. The second 

value entered is considered the x-value because it remains in the display, 

which is the X-register. 

The arithmetic operators, +, -, *, and ÷, are the four basic two-

number functions. Others are given below. 

The Power Function 

Pressing Y calculates the value of y raised to the x power. The base 

number, y, is keyed in before the exponent, x. 

 

To Calculate Keystrokes Display 

2
1.4

 2 v 1.4 Y  2.6390 

2-1.4
 2 v 1.4 “ Y  0.3789 

(-2)
3
 2 “ v 3 Y -8.0000 

3 2  or 2
1/3

 2 v 3 ∕ Y  1.2599 

Percentages 

The percentage functions, k and ∆, preserve the value of the original 

base number along with the result of the percentage calculation. As shown 

in the example below, this allows you to carry out subsequent calculations 

using the base number and the result without re-entering the base number. 

Percent. The k function calculates the specified percentage of a base 

number. 
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For example, to find the sales tax at 3% and total cost of a $15.76 item: 

Keystrokes Display  

15.76 v 15.7600 Enters the base number (the price). 

3 |k 0.4728 Calculates 3% of $15.76 (the tax). 

+ 16.2328 Total cost of item ($15.76 + $0.47). 

Percent Difference. The ∆ function calculates the percent difference 

between two numbers. The result expresses the relative increase (a positive 

result) or decrease (a negative result) of the second number entered 

compared to the first number entered. 

For example, suppose the $15.76 item only cost $14.12 last year. What is 

the percent difference in last year’s price relative to this year’s? 

Keystrokes Display  

15.76 v  15.7600 This year's price (our base number) 

14.12 |∆ -10.4061 Last year's price was 10.41% less 

than this year's price. 

Polar and Rectangular Coordinate Conversions 

The : and ; functions are provided in the 

HP-15C for conversions between polar 

coordinates and rectangular coordinates. The 

angle θ is assumed to be in the mode, whether 

degrees (in a decimal format, not a minutes-

seconds format), radians, or grads. θ is 

measured as shown in the illustration at right. 

Polar Conversion. Pressing |: 

(polar) converts a set of rectangular coordinates (x, y) to polar coordinates 

(magnitude r, angle θ). The y-value must be entered first, the x-value 

second. Upon executing |: r will appear in the display. Press ® 

(X exchange Y) to bring θ out of the Y-register and into the display (X-

register). θ will be returned as a value between -180° and 180°, between -π 

and π radians, or between -200 and 200 grads. 
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Rectangular Conversion. Pressing ´; (rectangular) converts a set of 

polar coordinates (magnitude r angle θ) into rectangular coordinates (x, y). θ 

must be entered first then r. Upon executing ´;, x will be displayed 

first; press ® to display y. 

 

 

 

 

 

 

 

 

Keystrokes Display  

|D  Set to Degrees mode (no annunciator). 

5 v 5.0000 y-value. 

10 10 x-value. 

|: 11.1803 r. 

® 26.5651 θ; rectangular coordinates converted to 

polar coordinates. 

30 v 30.0000 θ. 

12 12 r. 

´; 10.3923 x-value. 

® 6.0000 y-value. Polar coordinates converted to 

rectangular coordinates. 
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Section 3 

The Automatic Memory Stack, 

LAST X, and Data Storage 

The Automatic Memory Stack 

and Stack Manipulation 

HP operating logic is based on a mathematical logic known as ―Polish 

Notation,‖ developed by the noted Polish logician Jan Łukasiewicz 

(Wookashye'veech) (1878-1956). Conventional algebraic notation places the 

algebraic operators between the relevant numbers or variables when 

evaluating algebraic expressions. Łukasiewicz’s notation specifies the 

operators before the variables. For optimal efficiency of calculator use, HP 

applied the convention of specifying (entering) the operators after 

specifying (entering) the variable(s). Hence the term "Reverse Polish 

Notation" (RPN). 

The HP-15C uses RPN to solve complicated calculations in a 

straightforward manner, without parentheses or punctuation. It does so by 

automatically retaining and returning intermediate results. This system is 

implemented through the automatic memory stack and the v key, 

minimizing total keystrokes. 

The Automatic 

Memory Stack Registers 

T 0.0000  

Z 0.0000  

Y 0.0000  

X 0.0000 Always displayed 

When the HP-15C is in Run mode (no PRGM annunciator displayed), the 

number that appears in the display is the number in the X-register. 
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Any number that is keyed in or results from the execution of a numeric 

function is placed into the display (X-register). This action will cause 

numbers already in the stack to lift, remain in the same register, or drop, 

depending upon both the immediately preceding and the current operation. 

Numbers in the stack are stored on a last-in, first-out basis. The three stacks 

drawn below illustrate the three types of stack movement. Assume x, y, z, 

and t represent any numbers which may be in the stack. 

Stack Lift No Stack Lift or Drop 
   lost      

T t  z  T t  t 

Z z  y  Z z  z 

Y y  x  Y y  y 

X x  π  X x  x  

Keys:  |$     ¤  

 

 Stack Drop 

T t  t 

Z z  t 

Y y  z 

X x  x + y 

Keys:      + 

Notice the number in the T-register remains there when the stack drops, 

allowing this number to be used repetitively as an arithmetic constant. 

Stack Manipulation Functions 

v. Pressing v separates two numbers keyed in one after the 

other. It does so by lifting the stack and copying the number in the display 

(X-register) into the Y-register. The next number entered then writes over 

the value in the X-register; there is no stack lift. The example below shows 

what happens as the stack is filled with the numbers 1, 2, 3, 4. (The 
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shading indicates that the contents of that register will be written over 

when the next number is keyed in or recalled.) 

 
   lost  lost    lost 

T t  z  y  y  x 

Z z  y  x  x  1 

Y y  x  1  1  2 

X x  1  1  2  2 

Keys:  1  v  2  v  
 

     lost   

T x  x  1  1 

Z 1  1  2  2 

Y 2  2  3  3 

X 2  3  3  4 

Keys:  3  v  4  
 

) (roll down), ( (roll up), and ® (X exchange Y). ) and ( 

roll the contents of the stack registers up or down one register (one value 

moves between the X- and the T-register). No values are lost. ® 

exchanges the numbers in the X- and Y-registers. If the stack were loaded 

with the sequence 1, 2, 3, 4, the following shifts would result from 

pressing )) and ®. 

 

T 1  4  1  1 

Z 2  1  2  2 

Y 3  2  3  4 

X 4  3  4  3 

Keys: 
 

)  
|
( 

 ®  
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The LAST X Register and K 

The LAST X register, a separate memory register, preserves the value that 

was last in the display before execution of a numeric operation.
*
 Pressing 

|K (LAST X) places a copy of the contents of the LAST X register 

into the display (X-register). For example: 

 
     lost 

T t  t  z 

Z z  z  y 

Y y  y  16 

X 4  16  4 

Keys:  |x  |K  

LAST X: /  4  4 

The K feature saves you from having to re-enter numbers you want to 

use again (as shown under Arithmetic Calculations With Constants, page 

39). It can also assist you in error recovery, such as executing the wrong 

function or keying in the wrong number. 

For example, suppose you mistakenly entered the wrong divisor in a chain 

calculation: 

Keystrokes Display  

287 v 287.0000  

12.9 + 22.2481 Oops! The wrong divisor. 

| K 12.9000 Retrieves from LAST X the last 

entry to the X-register (the 

incorrect divisor) before + 

was executed. 
 

                                                           
* Unless that operation was ’, S, or L, which don’t use or preserve the value in the display (X-

register), but instead calculate from data in the statistics storage registers (R2 to R7). For a complete list of 

operations which save x in LAST X, refer to appendix B. 
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Keystrokes  Display  

* 287.0000 Reverses the function that 
produced the wrong answer. 

13.9 + 20.6475 The correct answer. 

Calculator Functions and the Stack 

When you want to key in two numbers, one after the other, you press 

v between entries of the numbers. However, when you want to key 

in a number immediately following any function (including manipulations 

like )), you do not need to use v. Why? Executing most HP-15C 

functions has this additional effect: 

• The automatic memory stack is lift-enabled that is, the stack will lift 

automatically when the next number is keyed or recalled into the 

display. 

• Digit entry is terminated, so the next number starts a new entry. 

 
     lost   

T t  t  z  z 

Z z  z  y  z 

Y y  y  2  y 

X 4  2  5  7 

Keys:  ¤  5  +  

There are four functions – v, `, z, and w – that disable stack 

lift.
*
 They do not provide for the lifting of the stack when the next number is 

keyed in or recalled. Following the execution of one of these functions, a new 

number will simple write over the currently displayed number instead of causing 

the stack to lift. (Although the stack lifts when v is pressed, it will not lift 

when the next number is keyed in or recalled. The operation of v 

illustrated on page 34 shows how v thus disables the stack.) In most 

cases, the above effects will come so naturally that you won’t even think 

about them. 

                                                           
* − will also disable the stack lift if digit entry is terminated, making − clear the entire display like 

`. Otherwise, it is neutral. For a further discussion of the stack, refer to appendix B. 
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     lost   

T z  z  z  z 

Z z  z  z  z 

Y y  y  y  y 

X 7  0  6  y
6
 

Keys:  |`  6  Y  

Order of Entry and the v Key 

An important aspect of two-number functions is the positioning of the 

numbers in the stack. To execute an arithmetic function, the numbers should 

be positioned in the stack in the same way that you would vertically 

position them on paper. For example: 

98  98  98  98 
-15  +15  x15  15 

As you can see, the first (or top) number would be in the Y-register, while 

the second (or bottom) number would be in the X-register. When the 

mathematics operation is performed, the stack drops, leaving the result in 

the X-register. Here is how a subtraction operation is executed in the 

calculator: 

 
   lost  lost     

T t  z  y  y  y 

Z z  y  x  x  y 

Y y  x  98  98  x 

X x  98  98  15  83 

Keys:  98  v  15  -  

The same number positioning would be used to add 15 to 98, multiply 98 by 

15, or divide 98 by 15. 
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Nested Calculations 

The automatic stack lift and stack drop make it possible to do nested 

calculations without using parentheses or storing intermediate results. A 

nested calculation is solved simply as a series of one- and two-number 

operations. 

Almost every nested calculation you are likely to encounter can be done 

using just the four stack registers. It is usually wisest to begin the 

calculation at the innermost number or pair of parentheses and work 

outward (as you would for a manual calculation). Otherwise, you may need 

to place an intermediate result into a storage register. For example, consider 

the calculation of 

3 [4 + 5 (6 + 7)] : 

Keystrokes Display  

6 v 7 + 13.0000 Intermediate result of  

(6 + 7). 

5 * 65.0000 Intermediate result of  

5 (6 + 7). 

4 + 69.0000 Intermediate result of  

[4 + 5 (6 + 7)]. 

3 * 207.0000 Final result:  

3 [4 + 5 (6 + 7)]. 

The following sequence illustrates the stack manipulation in this example. 

The stack automatically drops after each two-number calculation, and then 

lifts when a new number is keyed in. (For simplicity, throughout the rest of 

this handbook we will not show arrows between the stacks.) 

 

T t  z  y  y  y 

Z z  y  x  x  y 

Y y  x  6  6  x 

X x  6  6  7  13 

Keys:  6  v  7  +  
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T y  y  y  y 

Z y  x  y  x 

Y x  13  x  65 

X 13  5  65  4 

Keys:  5  *  4  

 

T y  y  y  y 

Z x  y  x  y 

Y 65  x  69  x 

X 4  69  3  207 

Keys:  +  3  *  

 

Arithmetic Calculations With Constants 

There are three ways (without using a storage register) to manipulate the 

memory stack to perform repeated calculations with a constant: 

1. Use the LAST X register. 

2. Load the stack with a constant and operate upon different 

numbers. (Clear the X-register every time you want to change 

the number operated upon)  

3. Load the stack with a constant and operate upon an 

accumulating number. (Do not change the number in the X-

register.) 

LAST X. Use your constant in the X-register (that is, enter it second) so 

that it always will be saved in the LAST X register. Pressing |K will 

retrieve the constant and place it into the X-register (the display). This can 

be done repeatedly. 
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Example: Two close stellar neighbors of Earth 

are Rigel Centaurus (4.3 light-years away) and 

Sirius (8.7 light-years away). Use the speed of 

light, c (3.0×10
8
 meters/second, or 9.5×10

15
 

meters/year), to figure the distances to these 

stars in meters. (The stack diagrams show only 

one decimal place.) 

 

 

T t  z  y  y 

Z z  y  x  x 

Y y  x  4.3  4.3 

X x  4.3  4.3  9.5   15 

Keys:  4.3  v 9.5 ‛ 15 

LAST X: /  /  /  / 

        

T y  y  y  x 

Z x  y  x  4.1   16 

Y 4.3  x  4.1  16  8.7 

X 9.5   15  4.1   16  8.7  9.5   15 

Keys:  *  8.7 |K 

LAST X: /  9.5   15  9.5   15  9.5   15 

      

T x  x     

Z 4.1   16  x     

Y 8.7  4.1   16  (Rigel Centaurus is 
4.1×10

16
 meters away.) 

(Sirius is 8.3×10
16

 
meters away.)  

X 9.5   15  8.3   16  

Keys:  *   

LAST X: 9.5   15  9.5   15     
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Loading the Stack with a Constant. Because the number in the T-register 

is replicated when the stack drops, this number can be used as a constant in 

arithmetic operations. 

 

T c  c New constant 
generation. 

Z c  c 

Y c  c Drops to interact 
with X-register. 

X x  cx 

Keys:  *   

Fill the stack with a constant by keying it into the display and pressing 

v three times. Key in your initial argument and perform the 

arithmetic operation. The stack will drop, a copy of the constant will "fall" 

into the Y-register, and a new copy of the constant will be generated in the 

T-register. 

If the variables change (as in the preceding example), be sure and clear the 

display before entering the new variable. This disables the stack so that the 

arithmetic result will be written over and only the constant will occupy the 

rest of the stack. 

If you do not have different arguments, that is, the operation will be 

performed upon a cumulative number, then do not clear the display—simply 

repeat the arithmetic operation. 

Example: A bacteriologist tests a certain strain 

of microorganisms whose population typically 

increases by 15% each day (a growth factor of 

1.15). If she starts with a sample culture of 

1000, what will be the bacteria population at 

the end of each day for four consecutive days? 

Keystrokes Display  

1.15 1.15 Growth factor. 

vv
v 

1.1500 Filling the stack. 

1000 1,000 Initial culture size. 
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Keystrokes Display  

* 1,150.0000 Population at the end of day 1. 

* 1,322.5000 Day 2. 

* 1,520.8750 Day 3. 

* 1,749.0063 Day 4. 

Storage Register Operations 

When numbers are stored or recalled, they are copied between the display 

(X-register) and the data storage registers. At ―power-up‖ (initial turn-on or 

Continuous Memory reset) the HP-15C has 21 directly accessible storage 

registers: R0 through R9, R.0 through R.9, and the Index register (RI) (see the 

diagram of the registers on the inside back cover). Six registers, R2 to R7, 

are also used for statistics calculations. 

The number of available data storage registers can be increased or 

decreased. The m function, which is used to reallocate registers in 

calculator memory, is discussed in appendix C, Memory Allocation. The 

lowest-numbered registers are the last to be deallocated from data storage, 

therefore it is wisest to store data in the lowest-numbered registers 

available.  

Storing and Recalling Numbers 

O (store). When followed by a storage register address (0 through 9 or 

.0 through .9*), this function copies a number from the display (X-register) 

into the specified data storage register. It will replace any existing contents 

of that register. 

l (recall). Similarly, you can recall data from a particular register into 

the display by pressing l followed by the register address. This brings 

a copy of the desired data into the display; the contents of the storage 

register remain unaltered. 

X (X exchange). Followed by 0 through .9,
*
 this function exchanges the 

contents of the X-register and the addressed data storage register. This is 

useful to view storage registers without disturbing the stack. 

                                                           
* All storage register operations can also be performed with the Index register (using V or %), which is 

covered in section 10, and with matrices, section 12. 
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The above are stack lift-enabling operations, so the number remaining in the 

X-register can be used for subsequent calculations. If you address a 

nonexistent register, the display will show Error 3. 

Example: Springtime is coming and you want to keep track of 24 crocuses 

planted in your garden. Store the number of crocuses blooming the first day 

and add to this the number of new blooms the second day. 

Keystrokes Display  

3 O 0 3.0000 Stores the number of first-day 

blooms in R0. 

 

Turn the calculator off. Next day, turn it back on again. 

 

l 0 3.0000 Recalls the number of crocuses that 

bloomed yesterday. 

5 + 8.0000 Adds today's new blooms to get the 

total blooming crocuses. 

Clearing Data Storage Registers 

Pressing ´ CLEAR Q (clear registers) clears the contents of all data 

storage registers to zero. (It does not affect the stack or the LAST X 

register.) To clear a single data storage register, store zero in that register. 

Resetting Continuous Memory clears all registers and the stack. 

Storage and Recall Arithmetic 

Storage Arithmetic. Suppose you not only wanted to store a number, but 

perform arithmetic with it and store the result in the same register. You can 

do this directly – without using l – by using the following procedure. 

1. Have your second operand (besides the one in storage) in the display 

(as the result of a calculation, a recall, or keying in). 

2. Press O. 

3. Press +, -, *, or ÷. 

4. Key in the register address (0 to 9, .0 to .9). (The Index register, 

discussed in section 10, can also be used.) 
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The number in the register is determined as follows: 

For storage arithmetic, 

new contents  

of register 
= 

old contents  

of register 

 

 
× 

 

number in  

display 

 

R0 r T t R0 r-x T t 

  Z z   Z z 

  Y y   Y y 

  X x   X x 

  Keys:  O-0    

Recall Arithmetic. Recall arithmetic allows you to perform arithmetic with 

the displayed value and a stored value without lifting the stack, that is, 

without losing any values from the Y-, Z, and T-registers. The keystroke 

sequence is the same as for storage arithmetic using l in place of 

O. 

For recall arithmetic, 

new display = old display 

 

 
× 

 

contents of  

register 

 

R0 r T t R0 r T t 

  Z z   Z z 

  Y y   Y y 

  X x   X x-r 

  Keys:  l-0    
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Example: Keep a running count of your newly blooming crocuses for two 

more days. 

Keystrokes Display  

8 O 0 8.0000 Places the total number of blooms as of 

day 2 in R0. 

4 O + 0 4.0000 Day 3: adds four new blooms to those 

already blooming. 

3 O + 0 3.0000 Day 4: adds three new blooms. 

24 l - 0 9.0000 Subtracts total number of blooms 

summed in R0(15) from the total 

number of plants (24); 9 crocuses have 

not bloomed. 

l 0 15.0000 (The number in R0 does not change.) 

Overflow and Underflow 

If an attempted storage or recall arithmetic operation would result in 

overflow in a data storage register, the value in the affected register will be 

replaced with ±9.999999999×10
99

 and the display will blink. To stop the 

blinking (clear the overflow condition), press − or = or | " 9. 

In case of underflow, the value in the register will be replaced with zero (no 

display blinking). Overflow and underflow are discussed further on page 

61. 

Problems 

1. Calculate the value of x in the following equation. 

(2.01) (1.71)2.75)(3.15 4.3

0.32] 7.46)[(8.335.2)(4 8.33
x




  

Answer: 4.5728. 

A possible keystroke solution is: 

4 v 5.2 - 8.33 * | K 7.46 - 0.32 * ÷ 3.15 
v 2.75 - 4.3 * 1.71 v 2.01 * - ÷ ¤ 
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2. Use arithmetic with constants to calculate the remaining 

balance of a $1000 loan after six payments of $100 each and 

an interest rate of 1% (0.01) per payment period. 

Procedure: Load the stack with (1 + i), where i = interest rate, 

and key in the initial loan balance. Use the following formula 

to find the new balance after each payment. 

New Balance = ((Old Balance)×(1 + i)) - Payment 

The first part of the key sequence would be: 

1.01 vvv 1000 

For each payment, execute: 

* 100 - 

Balance after six payments: $446.32. 

3. Store 100 in R5. Then: 

1. Divide the contents of R5 by 25. 

2. Subtract 2 from the contents of R5. 

3. Multiply the contents of R5 by 0.75. 

4. Add 1.75 to the contents of R5. 

5. Recall the contents of R5. 

Answer: 3.2500. 
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Section 4 

Statistics Functions 

A word about the statistics functions: their use is based on an understanding 

of memory stack operation (Section 3). You will find that order of entry is 

important for most statistics calculations. 

Probability Calculations 

The input for permutation and combination calculations is restricted to 

nonnegative integers. Enter the y-value before the x-value. These functions, 

like the arithmetic operators, cause the stack to drop as the result is placed 

in the X-register. 

Permutations. Pressing ´p calculates the number of possible 

different arrangements of y different items taken in quantities of x items at a 

time. No item occurs more than once in an arrangement, and different 

orders of the same x items in an arrangement are counted separately. The 

formula is 

)!(

!
,

xy

y
P xy


  

Combinations. Pressing |c calculates the number of possible sets 

of y different items taken in quantities of x items at a time. No item occurs 

more than once in a set, and different orders of the same x items in a set are 

not counted separately. The formula is 

)!(!

!
,

xyx

y
C xy


  

Examples: How many different arrangements are possible of five pictures 

which can be hung on the wall three at a time? 

Keystrokes Display  

5 v 3 3 Five (y) pictures put up three (x) at a 

time. 

´p 60.0000 Sixty different arrangement possible. 
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How many different four-card hands can be dealt from a deck of 52 cards? 

Keystrokes Display  

52 v 4  4 Fifty-two (y) cards dealt four 

(x) at a time. 

|c  270,725.0000 Number of different hands 

possible. 

The maximum size of x or y is 9,999,999,999. 

Random Number Generator 

Pressing ´# (random number) will generate a random number 

(part of a uniformly distributed pseudo-random number sequence) in the 

range 0 ≤ r <1.
*
 

At initial power-up (including reset of Continuous Memory), the HP-15C 

random number generator will use zero as a ―seed‖ to initiate a random 

number sequence. Any time you generate a random number, that number 

becomes the seed for the next random number. You can initiate a different 

random number sequence by storing a new seed for the random number 

generator. (Repetition of a random number seed will produce repetition of 

the random number sequence.) 

O´# will store the X-register number (0 ≤ r < 1) as a new seed 

for the random number generator. (A value for r outside this range will be 

converted to fit within the range.) 

l´# will recall to the display the current random number seed. 

Keystrokes Display  

.5764 0.5764 Stores 0.5764 as random number seed. 

(The ´ keystroke may be omitted.) O´
# 

0.5764 

´# 0.3422 Random number sequence initiated by the 

above seed. ´# 0.2809 

− 0.0000  

                                                           
* Passes the spectral test (D. Knuth, The Art of Computer Programming. Vol. 2. Seminumerical Algorithms, 

Third Edition, 1998). 
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Keystrokes Display  

l´
# 

0.2809 Recall last random number generated, 

which is the new seed. (The ´ may be 

omitted.) 

Accumulating Statistics 

The HP-15C performs one- and two-variable statistical calculations. The 

data is first entered into the Y- and X-registers. Then the z function 

automatically calculates and stores statistics of the data in storage registers 

R2 through R7. These registers are therefore referred to as the statistics 

registers. 

Before beginning to accumulate statistics for a new set of data, press  

´ CLEAR ∑ to clear the statistics registers and stack. (If you have 

reallocated registers in memory and any of the statistics registers no longer 

exist, Error 3 will be displayed when you try to use CLEAR ∑, z, or 

w Appendix C explains how to reallocate memory.) 

In one-variable statistical calculations, enter each data point (x-value) by 

keying in x and then press z. 

In two-variable statistical calculations, enter each data pair (the x- and y-

values) as follows: 

1. Key y into the display first. 

2. Press v. The displayed y-value is copied into the Y-register. 

3. Key x into the display. 

4. Press z. The current number of accumulated data points, n, will be 

displayed. The x-value is saved in the LAST X register and y remains 

in the Y-register. z disable stack lift, so the stack will not lift 

when the next number is keyed in. 
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In some cases involving x or y data values that differ by a relatively small 

amount, the calculator cannot compute s, r, linear regression, or ŷ, and will 

display Error 2. This will not happen, however, if you normalize the data by 

keying in only the difference between each value and the mean or 

approximate mean of the values. This difference must be added back to the 

calculations of  x, ŷ, and the y-intercept (L). For example, if your x-values 

were 665999, 666000, and 666001, you should enter the data as -1, 0, and 1; 

then add 666000 back to the relevant results. 

The statistics of the data are compiled as follows: 

 

Register Contents 

R2 n Number of data points accumulated (n also 

appears in the X-register). 

R3 Σx Summation of x-values. 

R4 Σx
 2

 Summation of squares of x-values. 

R5 Σy Summation of y-values. 

R6 Σy
2
 Summation of squares of y-values. 

R7 Σxy Summation of products of x- and y-values. 

You can recall any of the accumulated statistics to the display (X-register) 

by pressing l and the number of the data storage register containing the 

desired statistic. If you press l z, Σy and Σx will be copied 

simultaneously from R3 and R5 respectively, into the X-register and the Y-

register, respectively. (The sequence l z lifts the stack twice if stack 

lift is enabled, once if not, and then enables stack lift.) 

Example: Agronomist Silas Farmer has 

developed a new variety of high-yield rice, 

and has measured the plant's yield as a 

function of fertilization. Use the z function 

to accumulate the data below to find the values 

for Σx, Σx
2 
Σy, Σy

2
, and Σxy for nitrogen 

fertilizer application (x) versus grain yield (y). 
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X 
NITROGEN APPLIED 

0.00 20.00 40.00 60.00 80.00 
(kg per hectare *), x 

Y 

GRAIN YIELD 

4.63 4.78 6.61 7.21 7.78 (metric tons per 
hectare), y 

*A hectare equals 2.47 acres. 

Keystrokes Display  

´ CLEAR ∑ 0.0000 Clears statistical storage 
registers (R2 through R7 and 
the stack). 

´ • 2 0.00 Limits display to two decimal 
places, like the data. 

4.63 v 4.63  

0 z 1.00 First data point. 

4.78 v 4.78  

20 z 2.00 Second data point. 

6.61v 6.16  

40 z 3.00 Third data point. 

7.21 v 7.21  

60 z 4.00 Fourth data point. 

7.78 v 7.78  

80 z 5.00 Fifth data point. 

l 3 200.00 Sum of x-values, Σx (kg of 
nitrogen). 

l 4 12.000.00 Sum of squares of x-values, 
Σx

2
. 

l 5 31.01 Sum of y-values, Σy (grain 
yield). 

l 6 200.49 Sum of squares of y-values, 
Σy

2
. 

l 7 1,415.00 Sum of products of x- and  
y-values, Σxy. 



52 Section 4: Statistics Functions 

 

Correcting Accumulated Statistics 

If you discover that you have entered data incorrectly, the accumulated 

statistics can be easily corrected. Even if only one value of an (x, y) data 

pair is incorrect, you must delete and re-enter both values. 

1. Key the incorrect data pair into the Y- and X-register. 

2. Press |w to delete the incorrect data. 

3. Key in the correct values for x and y. 

4. Press z. 

Alternatively, if the incorrect data point or pair is the most recent one 

entered and z has been pressed, you can press |K |w to 

remove the incorrect data.
*
 

Example: After keying in the preceding data. Farmer realizes he misread a 

smeared figure in his lab book. The second y-value should have been 5.78 

instead of 4.78. Correct the data input. 

Keystrokes Display  

4.78 
v 

4.78 Keys in the data pair we want to replace 

and deletes the accompanying statistics. 

The n-value drops to four. 20 |w 4.00 

5.78 
v 

5.78 Keys in and accumulates the replacement 

data pair. 

20 z 5.00 The n -value is back to five. 

We will use these statistics in the rest of the examples in this section. 

                                                           
* Note that these methods of data deletion will not delete any rounding errors that may have been generated 

in the statistics registers. This difference will not be serious unless the erroneous pair has a magnitude that 

is enormous compared with the correct pair, in such a case, it would be wise to start over! 
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Mean 

The ’ function computes the arithmetic mean (average) of the x-and y-

values using the formulas shown in appendix A and the statistics 

accumulated in the relevant registers. When you press |’ the contents 

of the stack lift (two registers if stack lift is enabled, one if not); the mean of 

x (  x) is copied into the X-register as the mean of y (  y) is copied 

simultaneously into the Y-register. Press ® to view  y. 

Example: From the corrected statistics data we have already entered and 

accumulated, calculate the average fertilizer application,  x. and average 

grain yield  y, for the entire range. 

Keystrokes Display  

|’ 40.00 Average kg of nitrogen,  x, for all cases. 

® 6.40 Average tons of rice,  y, for all cases. 

Standard Deviation 

Pressing |S computes the standard deviation of the accumulated 

statistics data. The formulas used to compute sx, the standard deviation of 

the accumulated x-values, and sy, the standard deviation of the accumulated 

y-values, are given in appendix A. 

This function gives an estimate of the population standard deviation from 

the sample data, and is therefore termed the sample standard deviation.
*
 

When you press |S, the contents of the stack registers are lifted (twice 

if stack lift is enabled, once if not); sx is placed into the X-register and sy is 

placed into the Y-register. Press ® to view sy. 

                                                           
* When your data constitutes not just a sample of a population but all of the population, the standard 

deviation of the data is the true population standard deviation (denoted ). The formula for the true 

population standard deviation differs by a factor of  nn /)1(  from the formula used for the S 

function. The difference between the values is small for large n, and for most applications can be ignored. 

But if you want to calculate the exact value of the population standard deviation for an entire population, 

you can easily do so: simply add, using z, the mean (  x) of the data to the data before pressing |S. 

The result will be the population standard deviation. (If you subsequently correct any of your accumulated 

data values, remember to delete the first mean value and add the corrected one.) 
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Example: Calculate the standard deviation about the mean calculated 

above. 

Keystrokes Display  

|S 31.62 Standard deviation about the mean nitrogen 

application,  x. 

® 1.24 Standard deviation about the mean grain 

yield,  y. 

Linear Regression 

Linear regression is a statistical method for finding a straight line that best 

fits a set of two or more data pairs, thus providing a relationship between 

two or more data pairs, thus providing a relationship between two variables. 

By the method of least squares, ´L will calculate the slope, A, and y-

intercept, B, of the linear equation: 

y=Ax+B 

1. Accumulate the statistics of your data using the z key. 

2. Press ´L. The y-intercept, B, appears in the display (X-

register). The slope, A, is copied simultaneously into the Y-

register. 

3. Press ® to view A. (As is the case with the functions ’ 

and S, L causes the stack to lift two registers if it's 

enabled, one if not). 

 

T t  y  y  

Z z  x  y  

Y y  A slope B y-intercept 

X x  B y-intercept A slope 

Keys:  ´L  ®   

The slope and y-intercept of the least squares line of the accumulated data 

are calculated using the equations shown in appendix A. 
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Example: Find the y-intercept and slope of the linear approximation of the 

data and compare to the plotted data on the graph below. 

 

Keystrokes Display  

´L 4.86 y-intercept of the line. 

® 0.04 Slope of the line. 

Linear Estimation and Correlation Coefficient 

When you press ´j the linear estimate, ŷ, is placed in the X-register 

and the correlation coefficient, r, is placed in the Y-register. To display r, 

press ®. 
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Linear Estimation. With the statistics accumulated, an estimated value for 

y, denoted ŷ, can be calculated by keying in a proposed value for x and 

pressing ´j. 

An Estimated value for x (denoted x̂ ) can be calculated as follows: 

1. Press ´L. 

2. Key in the known y-value. 

3. Press ® - ® ÷. 

Correlation Coefficient. Both linear regression and linear estimation 

presume that the relationship between the x and y data values can be 

approximated by a linear function. The correlation coefficient, r, is a 

determination of how closely your data fit a straight line. The range is -1  r 

 1, with -1 representing a perfectly negative correlation and +1 

representing a perfectly positive correlation. 

Note that if you do not key in a value for x before executing ´j, the 

number previously in the X-register will be used (usually yielding a 

meaningless value for ŷ). 

Example: What if 70 kg of nitrogen fertilizer were applied to the rice field? 

Predict the grain yield based on Farmer’s accumulated statistics. Because 

the correlation coefficient is automatically included in the calculation, you 

can view how closely the data fit a straight line by pressing ® after the 

y prediction appears in the display. 
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Keystrokes Display  

70 ´j 7.56 

 

Predicted grain yield in tons/hectare. 

® 0.99 The original data closely approximates a 

straight line. 

Other Applications 

Interpolation. Linear interpolation of tabular values, such as in 

thermodynamics and statistics tables, can be carried out very simply on the 

HP-15C by using the j function. This is because linear interpolation is 

linear estimation: two consecutive tabular values are assumed to form two 

points on a line, and the unknown intermediate value is assumed to fall on 

that same line. 

Vector Arithmetic. The statistical accumulation functions can be used to 

perform vector addition and subtraction. Polar vector coordinates must be 

converted to rectangular coordinates upon entry (θ, v, r ;, z). 
The results are recalled from R3 (Σx) and R5 (Σy) (using l z) and 

converted back to polar coordinates, if necessary. Remember that for polar 

coordinates the angle is between -180° and 180° (or -π and π radians, or -

200 and 200 grads). To convert to a positive angle, add 360 (or 2π or 400) 

to the angle. 

For the second vector entered, the final keystroke will be either z or 

w, depending on whether the two vectors should be added or subtracted. 
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Section 5 

The Display 

and Continuous Memory 

Display Control 

The HP-15C has three display formats – •, i, and ^  – that 

use a given number (0 through 9) to specify display format. The illustration 

below shows how the number 123,456 would be displayed specified to four 

places in each possible mode. 

´ • 4 : 123,456.0000 

´ i 4 : 1.2346    05 

´ ^ 4 : 123.46    03 

Owing to Continuous Memory, any change you make in the display format 

will be preserved until Continuous Memory is reset. 

The current display format takes effect when digit entry is terminated; until 

then, all digits you key in (up to 10) are displayed. 

Fixed Decimal Display 

• (fixed decimal) format displays a figure with the number of decimal 

places you specify (up to nine, depending on the size of the integer portion.) 

Exponents will be displayed if the number is too small or too large for the 

display. At ―power-up,‖ the HP-15C is in • 4 format. The key sequence 

is ´• n. 

Keystrokes Display  

123.4567895 123.4567895  

´• 4 123.4568  

´• 6 123.456790 Display is rounded to six decimal 

places. (Ten places are stored 

internally.) 

´• 4 123.4568 Usual • 4 display. 
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Scientific Notation Display 

i (scientific) format displays a number in scientific notation. The 

sequence ´i n specifies the number of decimal places to be shown. 

Up to six decimal places can be shown since the exponent display takes 

three spaces. The display will be rounded to the specified number of 

decimal places; however, if you specify more decimal places than the six 

places the display can hold (that is, i 7, 8, or 9), rounding will occur in 

the undisplayed seventh, eighth, or ninth decimal place.
*
 

With the previous number still in the display: 

Keystrokes Display  

´i 6 1.234568  02 Rounds to and shows six 

decimal places. 

´i 8 1.234567  02 Rounds to eight decimal places, 

but displays only six. 

Engineering Notation Display 

^ (engineering) format displays numbers in an engineering notation 

format in a manner similar to i, except: 

 In engineering notation, the first significant digit is always present in 

the display. The number you key in after ´^ specifies the 

number of additional digits to which you want to round the display. 

 Engineering notation shows all exponents in multiples of three. 

Keystrokes Display  

.012345 0.012345  

´^ 

1 

12.       -03 Rounds to the first digit after 

the leading digit. 

´^ 3 12.35     -03  

10 * 123.5     -03 Decimal shifts to maintain 

multiple of three in exponent. 

´• 4 0.1235 Usual • 4 format. 

                                                           
* Therefore, the display shows no distinction among i. 7, 8, and 9 unless the number rounded up is a 9, 

which carries a 1 over into the next higher decimal place. 
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Mantissa Display 

Regardless of the display format, the HP-15C always internally holds each 

number as a 10-digit mantissa and a two-digit exponent of 10. For example, 

π is always represented internally as 3.141592654×10
00

, regardless of what 

is in the display. 

When you want to view the full 10-digit mantissa of a number in the X-

register, press ´ CLEAR u. To keep the mantissa in the display, 

hold the u key down. 

Keystrokes Display 

| $ 3.1416 

´ CLEAR 
u (hold) 3141592654 

Round-Off Error 

As mentioned earlier, the HP-15C holds every value to 10 digits internally. 

It also rounds the final result of every calculation to the 10th digit. Because 

the calculator can provide only a finite approximation for numbers such as  

or 2/3 (0.666…), a small error due to rounding can occur. This error can be 

increased in lengthy calculations, but usually is insignificant. To accurately 

assess this effect for a given calculation requires numerical analysis beyond 

our scope and space here! Refer to the HP-15C Advanced Functions 

Handbook for a more detailed discussion. 

Special Displays 

Annunciators 

The HP-15C display contains eight annunciators that indicate the status of 

the calculator for various operations. The meaning and use of these 

annunciators is discussed on the following pages: 

 
* Low-power indication, page 62. 

USER User mode, pages 79 and 144. 

f and g Prefixes for alternate functions, pages 18-19. 

RAD and GRAD Trigonometric modes, page 26. 

C Complex mode, page 121. 

PRGM Program mode, page 66. 
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Digit Separators 

The HP-15C is set at power-up so that it separates integral and fractional 

portions of a number with a period (a decimal point), and separates groups 

of three digits in the integer portion with a comma. You can reverse this 

setting to conform to the numerical convention used in many countries. To 

do so, turn off the calculator. Press and hold =, press and hold ., 

release =, then release . (= / .). (Repeating this sequence will 

set the calculator to the previous display convention.) 

Keystrokes Display 

12345.67 12,345.67 

= / . 12.345.6700 

= / . 12,345.6700 

Error Display 

If you attempt an improper operation—such as division by zero—an error 

message (Error followed by a digit) will appear in the display. For a 

complete listing of error messages and their causes, refer to appendix A. 

To clear the Error display and restore the calculator to its prior condition, 

press any key. You can then resume normal operation. 

Overflow and Underflow 

Overflow. When the result of a calculation in any register is a number with 

a magnitude greater than 9.999999999×10
99

, ± 9.999999999×10
99

 is placed 

in the affected register and the overflow flag, flag 9, is set.
*
 Flag 9 causes 

the display to blink. When overflow occurs in a running program, execution 

continues until completion of the program, and then the display blinks. 

The blinking can be stopped and flag 9 cleared by pressing −, = or 

|" 9. 

Underflow. If the result of a calculation in any register is a number with a 

magnitude less than 1.000000000×10
-99

, that number will be replaced by 

zero. Underflow does not have any other effect. 

 

                                                           
* Recall that display does not include the last three digits of the mantissa. 
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Low-Power Indication 

When a flashing asterisk, which indicates 

low battery power, appears in the lower 

left-hand side of the display, there is no 

reason to panic. You still have plenty of 

calculator time remaining: at least 10 

minutes if you continuously run programs, 

and at least an hour if you do calculations 

manually. Refer to appendix F (page 259) 

for information on replacing the batteries. 

 

 

Continuous Memory 

Status 

The Continuous Memory feature of the HP-15C retains the following in the 

calculator, even when the display is turned off: 

 All numeric data stored in the calculator. 

 All programs stored in the calculator. 

 Position of the calculator in program memory. 

 Display mode and setting. 

 Trigonometric mode (Degrees, Radians, or Grads). 

 Any pending subroutine returns. 

 Flag settings (except flag 9, which clears when the display is 

manually turned off). 

 User mode setting. 

 Complex mode setting. 

When the HP-15C is turned on, it always ―wakes up‖ in Run mode. If the 

calculator is turned off, Continuous Memory will be preserved for a short 

period while the batteries are removed. Data and programs are preserved 

longer than other aspects of calculator status. Refer to appendix F for 

instructions on changing batteries. 

0.0000 
* 
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Resetting Continuous Memory 

If at any time you want to reset (entirely clear) the HP-15C Continuous 

Memory: 

1. Turn the calculator off. 

2. Press and hold the = key, then press and hold the - 

key. 

3. Release the = key, then the - key. (This convention 

is represented as = / -.) 

When Continuous Memory is reset, Pr Error (power error) will be 

displayed. Press any key to clear the display. 

Note: Continuous Memory can inadvertently be interrupted and 

reset if the calculator is dropped or otherwise traumatized. 
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Section 6 

Programming Basics 

The next five sections are dedicated to explaining aspects of programming 

the HP-15C. Each of these programming sections will first discuss basic 

techniques (The Mechanics), then give examples for the implementation of 

these techniques (Examples), and lastly discuss finer points of operation in 

greater detail (Further Information). Read only as far as you need to support 

your use of the HP-15C. 

The Mechanics 

Creating a Program 

Programming the HP-15C is an easy matter, based simply on recording the 

keystroke sequence used when calculating manually. (This is called 

―keystroke programming‖.) To create a program out of a series of 

calculation steps requires two extra manipulations: deciding where and how 

to enter your data; and loading and storing the program. In addition, 

programs can be instructed to make decisions and perform iterations 

through conditional and unconditional branching. 

As we step through the fundamentals of programming, we'll rework the 

falling object program illustrated in the Problem Solver (page 14). 

Loading a Program 

Program Mode. Press | ¥ (program/run) to set the calculator to 

Program mode (PRGM annunciator on). Functions are stored and not 

executed when keys are pressed in Program mode. 

Keystrokes Display  

| ¥ 000- Switches to Program mode; 

PRGM annunciator and line 

number (000) displayed. 
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Location in Program Memory. Program memory – and therefore the 

calculator's position in program memory – is demarcated by line numbers. 

Line 000 marks the beginning of program memory and cannot be used to 

store an instruction. The first line that contains an instruction is line 001. 

Program lines other than 000 do not exist until instructions are written for 

them. 

You can start a program at any existent line (designated nnn), but it is 

simplest and safest to start an independent program (as opposed to a 

subroutine) at the beginning of program memory. As you write, any existing 

program lines will be preserved and ―bumped‖ down in program memory. 

Press t “ 000 (in Program or Run mode) to move to line 000 

without recording the t statement. In Run mode, ´ CLEAR M 

will also reset the calculator to line 000- without clearing program memory. 

Alternatively, you can clear program memory, which will erase all 

programs in memory and position you to line 000. To do so, press ´ 

CLEAR M in Program mode. 

Program Begin. A label instruction – ´b followed by a letter 

(A through E) or number (0 through 9 or .0 through .9) – is used to 

define the beginning of a program or routine. The use of labels allows you 

to quickly select and run one particular program or routine out of several. 

Keystrokes Display  

´ CLEAR 

M 
000- Clears program memory and 

sets to line 000 (start of 

program memory). 

´ b A 001-42,21,11  

Recording a Program. Any key pressed—operator or constant—will be 

recorded in memory as a programmed instruction.
*
 

                                                           
* Except the nonprogrammable functions, which are listed on page 80. 
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Keystrokes Display  

2 002-         2   

* 003-        20  

9 004-         9 Given h in the X-register, 

lines 002 to 008 calculate . 005-        48 

8 006-         8 

9.8

2h
. ÷ 007-        10 

¤ 008-        11 

Program End. There are three possible endings for a program: 

 | n (return) will end a program, return to line 000, and halt. 

 ¦ will stop a program without moving to line 000. 

 The end of program memory contains an automatic n. 

Keystrokes Display  

|n 009-     43 32 Optional if this is the last 

program in memory. 

Intermediate Program Stops 

Use ´ © (pause) as a program instruction to momentarily stop a 

program and display an intermediate result. (Use more than one © for a 

longer pause.) 

Use a ¦ (run/stop) instruction to stop the program indefinitely. The 

program will remain positioned at that line. You can resume program 

execution (from that line) by pressing ¦ during Run mode, that is, from 

the keyboard. 

Running a Program 

Run Mode. Switch back to Run mode when you are done programming: 

| ¥. Program execution must take place in Run mode. 
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Keystrokes Display  

|¥  Run mode; no PRGM annunciator 

displayed. (The display will depend 

on any previous result.) 

The position in program memory does not change when modes are 

switched. Should the calculator be shut off, it always ―wakes up‖ in 

Run mode. 

Executing a Program. In Run mode, press ´ letter label or G digit 

(or letter) label. This addresses a program and starts its execution. The 

display will flash running. 

Keystrokes Display  

300.51 300.51 Key a value for h into the X-register. 

´A 7.8313 The result of executing program 

―A‖. (The number of seconds it 

takes an object dropped from 300.51 

meters high to hit the ground.) 

Restarting a Program. Press ¦ to continue execution of a program 

that was stopped with a ¦ instruction. 

User Mode. User mode is an optional condition to save keystrokes when 

executing letter-named programs. Pressing ´ U will interchange the 

´-shifted and primary functions of the A through E keys. You can 

then execute a program using just one keystroke (skipping the ´ or 

G). 

How to Enter Data 

Every program must take into account how and when data will be supplied. 

This can be done in Run mode before running the program or during an 

interruption in the program. 

1. Prior entry. If a variable value will be used in the first line of the 

program, enter it into the X-register before starting the program. If it 

will be used later, you can store it (with O) into a storage 

register, and recall it (with a programmed l) within the 

program. 

 



70 Section 6: Programming Basics 

 

This is the method used above, where h was placed in the X-register 

before running the program. No v instruction is necessary 

because program execution (here: ´A) both terminates digit 

entry and enables the stack lift. The above program then multiplied 

the contents of the X-register (h) by 2. 

The presence of the stack even makes it possible to load more than 

one variable prior to running a program. Keeping in mind how the 

stack moves with subsequent calculations and how the stack can be 

manipulated (as with ®), it is possible to write a program to use 

variables which have been keyed into the X-, Y-, Z-, and T-registers. 

2. Direct entry. Enter the data as needed as the program runs. Write a 

¦ (run/stop) instruction into the program where needed so the 

program will stop execution. Enter your data, then press ¦ to 

restart the program. 

Do not key variable data into the program itself. Any values that will vary 

should be entered anew with each program execution. 

Program Memory 

At power-up (Continuous Memory reset), the HP-15C offers 322 bytes of 

program memory and 21 storage registers. Most program steps 

(instructions) use one byte, but some use two. The distribution of memory 

capacity can be altered, as explained in appendix C. The maximum 

attainable program memory is 448 bytes (with the permanent storage 

registers—RI, R0, and R1 — remaining); maximum number of storage 

registers is 67 (with no program memory). 

Example. Mother's Kitchen, a canning 

company, wants to package a ready-to-

eat spaghetti mix containing three 

different cylindrical cans: one of 

spaghetti sauce, one of grated cheese, 

and one of meatballs. Mother's needs to 

calculate the base areas, total surface 

areas, and volumes of the three different 

cans. It would also like to know, per 

package, the total base area, surface 

area, and volume.  
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The program to calculate this information uses these formulas and data: 

base area = r
2
. 

volume = base area × height = r
2
h. 

surface area = 2 base areas + side area = 2r
2
 + 2rh. 

 

Radius, r Height, h Base Area Volume Surface Area 

2.5cm 8.0 cm ? ? ? 

4.0 10.5 ? ? ? 

4.5 4.0 ? ? ? 

TOTALS   ? ? ? 

Method: 

1. Enter an r value into the calculator and save it for other calculations. 

Calculate the base area (r
2
), store it for later use, and add the base 

area to a register which will hold the sum of all base areas. 

2. Enter h and calculate the volume (r
2
h). Add it to a register to hold 

the sum of all volumes. 

3. Recall r. Divide the volume by r and multiply by 2 to yield the side 

area. Recall the base area, multiply by 2, and add to the side area to 

yield the surface areas. Sum the surface areas in a register. 

Do not enter the actual data while writing the program – just provide for 

their entry. These values will vary and so will be entered before and/or 

during each program run. 

Key in the following program to solve the above problem. The display 

shows line numbers and keycodes (the row and column location of a key), 

which will be explained under Further Information. 

Keystrokes Display  

| ¥ 000- Sets calculator to Program 

mode (PRGM displayed). 

´ CLEAR M 000- Clears program memory. Starts 

at line 000. 
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Keystrokes Display   

´bA 001-42,21,11  Assigns this program the label 

―A‖. 

O 0 002-   44  0  Stores the contents of X-register 

into R0. r must be in the X-

register before running the 

program. 

|x 003-   43 11  Squares the contents of the X-

register (which will be r). 

|$ 004-   43 26   

* 005-      20  r
2
, the BASE AREA of a can. 

O 4 006-   44  4  Stores the BASE AREA in R4. 

O + 1 007-44,40, 1  Keeps a sum of all BASE 

AREAS in R1. 

¦ 008-      31  Stops to display BASE AREA 

and allow entry of the h value. 

* 009-      20  Multiplies h by the BASE 

AREA, giving VOLUME. 

´ © 010-   42 31  Pauses briefly to display 

VOLUME. 

O + 2 011-44,40, 2  Keeps a sum of all can 

VOLUMES in R2. 

l 0 012-   45  0  Recalls r. 

÷ 013-      10  Divides VOLUME by r. 

2 014-       2   

* 015-      20  2 rh, the SIDE AREA of a can. 

l 4 016-   45  4  Recalls the BASE AREA of the 

can. 

2 017-       2  Multiplies base area by two (for 

top and bottom). * 018-      20 
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Keystrokes Display  

+ 019–      40 SIDE AREA + BASE AREA 

= SURFACE AREA. 

O + 3 020–44,40, 3 Keeps a sum of all SURFACE 

AREAS in R3. 

| n 021–   43 32 Ends the program and returns 

program memory to line 000. 

Now, let's run the program: 

Keystrokes Display  

| ¥  Sets calculator to Run mode. 

(PRGM cleared.) 

´ CLEAR Q  Clears all storage registers. The 

display does not change. 

2.5 2.5 Enter r of the first can. 

´ A  

(or: G A) 

19.6350 Starts program A. BASE AREA 

of first can. 

(running flashes during 

execution.) 

8 8 Enter h of first can. Then restart 

program. 

¦ 157.0796 VOLUME of first can. 

 164.9336 SURFACE AREA of first can. 

4 4 Enter r of the second can. 

¦ 50.2655 BASE AREA of second can. 

10.5 10.5 Enter h of second can. 

¦ 527.7876 VOLUME of second can. 

 364.4247 SURFACE AREA of 

second can. 

4.5 4.5 Enter r of the third can. 

¦ 63.6173 BASE AREA of third can. 
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Keystrokes Display  

4 4 Enter h of third can. 

¦ 254.4690 VOLUME of third can. 

 240.3318 SURFACE AREA of third can. 

l 1 133.5177 Sum of BASE AREAS. 

l 2 939.3362 Sum of VOLUMES. 

l 3 769.6902 Sum of SURFACE AREAS. 

The preceding program illustrates the basic techniques of programming. It 

also shows how data can be manipulated in Program and Run modes by 

entering, storing, and recalling data (input and output) using v, 

O, l, storage register arithmetic, and programmed stops. 

Further Information 

Program Instructions 

Each digit, decimal point, and function key is considered an instruction 

and is stored in one line of program memory. An instruction may include 

prefixes (such as ´, O, t and b) and still occupy only one 

line. Most instructions require one byte of program memory; however, some 

require two. For a complete list of two-byte instructions, refer to 

Appendix C. 

Instruction Coding 

Each key on the HP-15C keyboard – except for the digit keys 0 through  

9 – is identified in Program mode by a two-digit ―keycode‖ that 

corresponds to the key's position on the keyboard. 

Instruction Code  

O + 1 006-44,40, 1 Sixth program line. 

´ e V XXX-42, 5,25 e is just ―5‖. 

The first digit of a keycode refers to the row (1 to 4 from top to bottom), 

and the second digit refers to the column (1, 2, 9, 0 from left to right). 

Exception: the keycode for a digit key is simply that digit. 
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Keycode 25: second row, fifth key. 

Memory Configuration 

Understanding memory configuration is not essential to your use of the 

HP-15C. It is essential, however, for obtaining maximum efficiency in 

memory and programming use. The more you program, the more useful this 

knowledge will be. Memory configuration and allocation is thoroughly 

explained in appendix C, Memory Allocation. 

Should you ever get an Error 10, you have run up against limitations of the 

HP-15C memory. If you learn how to reallocate memory, you can greatly 

increase your ability to store information in the HP-15C. 

The HP-15C memory consists of 67 registers (R0 to R65 and the Index 

register) divided between data storage and programming/advanced function 

capability. The initial configuration is: 

 46 registers for both programming and the advanced functions 

(_, f, the imaginary stack, and > functions). At seven 

bytes of memory per register, this is worth 322 program bytes if no 

memory is dedicated to advanced functions. 

 21 registers for data storage (R0 to R9, R.0 to R.9, and the Index 

register). 

 



76 Section 6: Programming Basics 

 

 

Memory is reallocated by telling the calculator which data storage register 

shall be the highest data register; all other registers are left for programming 

and advanced functions. 

Keystrokes Display  

60 ´ m %
*
 60.0000 R60 and below allocated to data 

storage; five (R61 to R65) remain 

for programming. 

                                                           
* The optional omission of the ´ keystroke after another prefix key is explained on page 78, Abbreviated 

Key Sequences. 

Initial Memory Configuration 
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Keystrokes Display  

1 ´ m % 1.0000 R1 and R0 allocated for data 

storage; R2 to R65 available for 

programming and advanced 

functions. 

19 ´ m% 19.0000 Original allocation: R19 (R.9) and 

below for data storage; R20, to 

R65 for programming and 

advanced functions.
*
 

lm% 19.0000 Displays the current highest data 

register. 

The m and W (memory status) functions are described in detail in 

appendix C. 

Keep in mind that an error message will result (given the above memory 

configuration) if 

1. You try to address a register higher than R19 (R.9), which initially is 

the highest register allocated to data storage (Error 3). 

2. You have 322 occupied program bytes and try to load more program 

lines (Error 4). 

3. You try to run an advanced function with insufficient available 

memory (Error 10). 

Program Boundaries 

End. Not every program needs to end with a n or ¦ instruction. If 

you are at the end of occupied program memory, there is an automatic 

n instruction, so you do not need to enter one. This can save you one 

line of memory. On the other hand, a program can ―end‖ by simply 

transferring execution to another routine using t (section 7). 

Labels. Labels in a program (or subroutine) are markers telling the 

calculator where to begin execution. Following an ´ label or G label 

instruction, the calculator will search downward in program memory for the 

                                                           
* For memory allocation and indirect addressing, registers R.0 through R.9 are referred to as R10 through R19. 
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corresponding label. If need be, the search will wrap around at the end of 

program memory and continue at line 000. When it encounters an 

appropriate label, the search stops and execution begins. 

If a label is encountered as part of a running program, it has no effect, that 

is, execution simply continues. Therefore, you can label a subordinate 

routine within a program (more on subroutines in section 9). 

Since the calculator searches in only one direction from its present position, 

it is possible (though not advisable) to use duplicate program labels. 

Execution will begin at the first appropriately labeled line encountered. 

 

If an ´ A entry starts the search 

for ―A‖ here, 

it then proceeds downward through 

memory, wraps around to line 000, 

and stops at label ―A‖. Execution then 

starts and continues (ignoring any 

other labels) until a halt instruction. 

000- 

(stop) 

´bA 

 

´b3 

 

¦ 

end of memory 

Unexpected Program Stops 

Pressing Any Key. Pressing any key will halt program execution. It will 

not halt in the middle of an operation. This instruction will be completed 

before the program stops. 

Error Stops. Program execution is immediately halted when the calculator 

attempts an improper operation that results in an Error display. 

To see the line number and keycode of the error-causing instruction (the 

line at which the program stopped), press any one key to remove the Error 

message, then switch to Program mode. 

If the display is flashing when a program stops, an overflow condition exists 

(page 61). Press − =, or | " 9 to stop the blinking. 

Abbreviated Key Sequences 

In certain cases, an ´ prefix you might expect to include in a key 

sequence is not needed. The rule for using an abbreviated key sequence is: 

the ´ prefix key is unnecessary after any other prefix key. (Page 19 

contains a list of prefix keys.) 
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For example, ´b´A becomes ´bA, ´m´% 

becomes ´m%, and O´# becomes O#. 

The removal of the ´ is not ambiguous because the ´-shifted function 

is the only logical one in these cases. The keycodes for such instructions do 

not include the extraneous ´ even if you do key it in. 

User Mode 

User mode is a convenience to save keystrokes when addressing (calling 

up) programs for execution. Pressing ´U will exchange the primary 

functions and ´-shifted functions of the A through E keys only. In 

User mode (USER annunciator displayed): 

 
´ shift  

Primary 

 A B C D E 
¤ ' @ y ∕ 

| shift x
2
 LN LOG   

 
Press | U again to deactivate User mode. 

Polynomial Expressions and Horner's Method 

Some expressions, such as polynomials, use the same variable several times 

for their solution. For example, the expression 

f(x) = Ax
4
 + Bx

3
 + Cx

2
 + Dx + E 

uses the variable x four different times. A program to solve such an 

equation could repeatedly recall a stored copy of x from a storage register. 

A shorter programming method, however, would be to use a stack which 

has been filled with the constant (refer to Loading the Stack with a 

Constant, page 41). 

Horner's Method is a useful means of rearranging polynomial expressions to 

cut calculation steps and calculation time. It is especially expedient in 

_ and f, two rather long-running functions that use subroutines. 

This method involves rewriting a polynomial expression in a nested fashion 

to eliminate exponents greater than 1: 

Ax
4 
+ Bx

3
 + Cx

2 
+

 
Dx + E 

(Ax
3
 + Bx

2
 + Cx + D)x + E 

((Ax
2
 + Bx + C)x + D)x + E 

(((Ax + B)x + C)x + D)x + E 
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Example: Write a program for 5x
4
 + 2x

3
 as (((5x + 2)x)x)x, then evaluate 

for x = 7 

Keystrokes Display  

| ¥ 000- Assumes position in memory 

is line 000. If it is not, clear 

program memory. 

´ b B 001-42,21,12  

5 002-       5  

* 003-      20 5x. 

2 004-       2  

+ 005-      40 5x + 2. 

* 006-      20 (5x + 2)x. 

* 007-      20 (5x + 2)x
2
. 

* 008-      20 (5x + 2)x
3
. 

| n 009-   43 32  

| ¥ 
 Returns to Run mode, Prior 

result remains in display. 

7 v v 

v 

  
7.0000 Loads the stack (X-, Y-, Z-, 

and T-registers) with 7. 

´ B 12,691.0000  

Nonprogrammable Functions 

When the calculator is in Program mode, almost every function on the 

keyboard can be recorded as an instruction in program memory. The 

following functions cannot be stored as instructions in program memory. 

 

´ CLEAR u | ‚ Â 
´ CLEAR M | W − 
´ % | ¥ =/. 
´ U t “ nnn =/­ 
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Problems 

  1. The village of Sonance has installed a 12-o'clock whistle in the 

firehouse steeple. The sound level at the firehouse door, 3.2 meters 

from the whistle, is 138 decibels. Write a program to find the sound 

level at various distances from the whistle. 

 Use the equation L = L0 – 20 log (r/r0), where: L0 is the known sound 

level (138 db) at a point near the source, 

r0 is the distance of that point from the source (3.2 m), L is the 

unknown sound level at a second point, and r is the distance of the 

second point from the source in meters. 

 What is the sound level at 3 km from the source (r = 3 km)? 

 A possible keystroke sequence is: 

|¥ ´bC 3.2 ÷ |o 20 * “ 138 

+ |n |¥ taking 15 program lines and 15 bytes of 

memory. This problem can be solved in a more general way by 

removing the specific values 3.2 and 138 from the program, and 

instead recalling the L0 and r0 values from storage registers; or by 

removing 3.2 and 138 and loading L0, r, and r0 into the stack before 

execution: L0 v r v r0. 

 (Answer: for r = 3 km, L = 78.5606 db.) 

  2. A "typical large" tomato weighs about 200 grams, of which about 

188 g (94%) are water. A tomato grower is trying to produce 

tomatoes of lower percentage water. Write a program to calculate the 

percent change in water content of a given tomato compared to the 

typical tomato. Use a programmed stop to enter the water weight of 

the new tomato. 

 What is the percent change in water content for a 230 g tomato of 

which 205 g are water? 

 A possible keystroke sequence is: 

´bÁ .94 v ¦ (enter water weight of new tomato) 

v ¦ (enter total weight of new tomato) ÷ |∆ 

|n taking 11 program lines and 11 bytes of memory. 

 (Answer: for the 230 g tomato above, the percent change in percent 

water weight is -5.1804%.) 
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Section 7 

Program Editing 

There are many reasons to modify a program after you've already stored it: 

you might want to add or delete an instruction (like O, ©, or 

¦), or you might even find some errors! The HP-15C is equipped with 

several editing features to make this process as easy as possible. 

The Mechanics 

Making a program modification of any kind involves two steps: moving to 

the proper line (the location of the needed change) and making the 

deletion(s) and/or insertion(s). 

Moving to a Line in Program Memory 

The Go To (t) Instruction. The sequence t “ nnn will move 

program memory to line number nnn, whether pressed in Run mode or 

Program mode (PRGM displayed). This is not a programmable sequence; it 

is for manually finding a specific position in program memory. The line 

number must be a three-digit number satisfying 000 ≤ nnn ≤ 448. 

The Single Step (Â) Instruction. To move only one line at a time 

forward through program memory, press Â (single step). This function 

is not programmable. 

In Program mode: Â will move the memory position forward one line 

and display that instruction. The instruction is not executed. If you hold the 

key down, the calculator will continuously scroll through the lines in 

program memory. 

In Run mode: Â will display the current program line while the key is 

held down. When the key is released, the current instruction is executed, the 

result displayed, and the calculator steps forward to the next program line to 

be executed. 



 Section 7: Program Editing 83 

 

The Back Step (‚) Instruction. To move one line backwards in 

program memory, press ‚ (back step) in Program or Run mode. This 

function is not programmable. ‚ will scroll (with the key held down) in 

Program mode. Program instructions are not executed. 

Deleting Program Lines 

Deletions of program instructions are made with − (back arrow) in 

Program mode. Move to the line you want to delete, then press −. Any 

remaining following lines will be renumbered to stay in sequence. 

Pressing − in Run mode does not affect program memory, but is used for 

display clearing. (Refer to page 21.) 

Inserting Program Lines 

Additions to a program are made by moving to the line preceding the point 

of insertion. Any instruction you key in will be added following the line 

currently in the display. To alter an instruction, first delete it, then add the 

new version. 

Examples 

Let's refer back to the can volume program on page 71 in section 6 and 

make a few changes in the instructions. (The can program as listed below is 

assumed to be in memory starting on line 001.) 

Deletions: If we don't need the summed base area, volume, and surface area 

values, we can delete the storage register additions (lines 007, 011, and 

020). 

Changes: To eliminate the need to stop the program to enter the height 

value (h), change the ¦ instruction to a l 1 instruction (because of 

the above deletions, R1 is no longer being used) and store h in R1 before 

running the program. To clean things up, let's also alter O 4 (line 006) 

to O 2 and l 4 (old line 016) to l 2, since we are no longer 

using R2 and R3. 

The editing process is diagrammed on the next page. 
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Let's start at the end of the program and work backwards. In this way, deletions 

will not change the line numbers of the preceding lines in the program. 

Keystrokes Display  

| ¥ 000- Program mode. (Assumes 
position is at line 000.) 

t “ 020 
(or use Â) 

020-44,40, 3 Moves position to line 020 
(instruction O + 3.) 
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Keystrokes Display  

− 019-      40 Line 020 deleted. 

| ‚ (hold) 016-   45  4 The next line to edit is line 
016 (l 4). 

− 015-      20 Line 016 deleted. 

l 2 016-   45  2 Line 016 changed to l 2. 

t “ 011 
(or hold ‚) 

011-44,40, 2 Moves to line 011 (O+ 
2). 

− 010-   42 31 Line 011 deleted. 

| ‚ (hold) 008-      31 Stop! (Single-stepping 
backwards to line 008: 
¦.) 

− 007-44,40, 1 ¦ deleted. 

l 1 008-   45  1 Line 008 changed to l 1. 

| ‚ 007-44,40, 1 Back-step to line 007. 

− 006-   44  4 Line 007 (O+ 1) 
deleted. 

− 005-      20 Line 006 (O 4) deleted. 

O 2 006-   44  2 Changed to O 2. 

The replacement of a line proceeds like this: 

 

Further Information 

Single-Step Operations 

Single-Step Program Execution. If you want to check the contents of a 

program or the location of an instruction, you can single step through the 

program in Program mode. If, on the other hand, running the program 

produces an error, or you suspect that a portion of the program is faulty,
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you can check the program by executing it stepwise. This is done by 

pressing Â in Run mode. 

Keystrokes Display  

| ¥  Run mode. 

´ CLEAR Q  Clear storage registers. 

t A  Move to first line of program 
A. 

8 O 1 8.0000 Store a can height. 

2.5 2.5 Enter a can radius. 

Â (hold) 00142,21,11 Keycode for line 001 (label). 

     (release) 2.5000 Result of executing line 001. 

Â 002   44  0 t 0. 

 2.5000 Result. 

Â 003   43 11 | x. 

 6.2500 Result. 

Â 004   43 26 | $. 

 3.1416 Result. 

Â 005      20 * 

 19.6350 Result: the base area of the can. 

Wrapping. Â will not move program position into ―unoccupied‖ 

program territory. Instead, the calculator will ―wrap around‖ to line 000. (In 

Run mode, Â will perform any instructions at the end of program 

memory, such as n, t or G.) 

Line Position 

Recall that the calculator's position in program memory does not change 

when it is shut off or Program/Run modes are changed. Upon returning to 

Program mode, the calculator line position will be where you left it. (If you 

executed a program ending with n, the position will be at line 000.) 

Therefore, if the calculator is left on and shuts itself off, you need only turn 

it on and switch to Program mode (the calculator always "wakes up" in Run 

mode) to be back where you were. 
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Insertions and Deletions 

After an insertion, the display will show the instruction you just added. 

After a deletion, the display will show the line prior to the deleted (now 

nonexistent) one. 

If all space available in memory is occupied, the calculator will not accept 

any program instruction insertions and Error 4 will be displayed. 

Initializing Calculator Status 

The contents of storage registers and the status of calculator settings will 

affect a program if the program uses those registers or depends on a certain 

status setting. If the current status is incorrect for the program being run, 

you will get incorrect results. Therefore, it is wise to clear registers and set 

relevant modes either just prior to running a program or within the program 

itself. A self-initializing program is more mistake-proof—but it also uses 

more program lines. 

Calculator-initializing functions are: ´ CLEAR ∑, ´ CLEAR 

M, ´ CLEAR Q, | D, | R, | g, | 

F, and | ". 

Problems 

It is good programming technique to avoid using identical program labels. 

(This shouldn't be hard, since the HP-15C provides 25 different labels.) To 

ensure against duplication of labels, you can clear program memory first. 

1. The following program is used by the manager of a savings and loan 

company to compute the future values of savings accounts according 

to the formula FV = PV (l + i)
n
, where FV is future value, PV is 

present value, i is the periodic interest rate, and n is the number of 

periods. Enter PV first (into the Y-register) and n second (into the X-

register) before executing the program. Given is an annual interest 

rate of 7.5% (so i = 0.075). 
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Keystrokes Display 

´ b . 1 001-42,21,.1 

´ •2 002-42, 7, 2 

1 003-       1   

. 004-      48  

0 005-       0 Interest. 

7 006-       7  

5 007-       5  

® 008-      34  

y 009-      14 (1 + i)
n
 

* 010-      20 PV (1 + i)
n
 

| n 011-   43 32  

 

 Load the program and find the future value of $1,000 invested for 5 

years; of $2,300 invested for 4 years. Remember to use G to run 

a program with a digit label. (Answers: $1,435.63; $3,071.58.) 

 Alter the program to make the annual interest rate 8.0%. 

 Using the edited program, find the future value of $500 invested for 

4 years; of $2,000 invested for 10 years. (Answers: $680.24; 

$4,317.85.) 

2. Create a program to calculate the length of a chord ℓ subtended by an 
angle  (in degrees) on a circle of radius r, according to the equation 

 

ℓ=2r sin .
2

θ
 

 

 
Find ℓ when θ = 30° and r = 25. 

 
(Answer: 12.9410. A possible program is: ´bA |D 
´•4 2 * ® 2 ÷ [ * |n). (Assumes 

 in Y-register and r in X-register when program is run.) 
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Make any necessary modifications in the program to also find and display s, 

the length of the circular arc cut by θ (in radians), according to the equation 

s = r θ. 

Complete the following table: 

θ r ℓ s 

45° 50 ? ? 

90° 100 ? ? 

270° 100 ? ? 

(Answers: 38.2683 and 39.2699; 141.4214 and 157.0796; 141.4214 and 

471.2389.  

A possible new sequence is: 

´bA |D ´•4 O0 2* ® O1 2÷ 
[ * ´© ´© l0 l1 ´r * 
|n). 
 



 

90 

Section 8 

Program Branching 

and Controls 

Although the instructions in a program are normally executed sequentially, 

it is often desirable to transfer execution to a part of the program other than 

the next line. Branching in the HP-15C may be simple, or it may depend on 

a certain condition. By branching to a previous line, it is possible to execute 

part of a program more than once – a process called looping. 

The Mechanics 

Branching 

The Go To (t) Instruction. Simple branching – that is, unconditional 

branching – is carried out with the instruction t label. In a running 

program, t will transfer execution to the next appropriately labeled 

program or routine (not to a line number). 

 

The calculator searches forward in memory, wrapping around through line 

000 if necessary, and resumes execution at the first line containing the 

proper label. 

Looping. If a t instruction specifies a label at a lower-numbered line 

(that is, a prior line), the series of instructions between the t and the 

label will be executed repeatedly – possibly indefinitely. The continuation 
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of this loop can be controlled by a conditional branch, an ¦ instruction 

(written into the loop), or simply by pressing any key during execution 

(which stops the program). 

 

Conditional Tests 

Another way to alter the sequence of program execution is by a conditional 

test, a true/false test which compares the number in the X-register either to 

zero or to the number in the Y-register. The HP-15C provides 12 different 

tests, two explicit on the keyboard and 10 others accessible using | 

T n.
*
 

1. Direct: | £ and | ~ . 

2. Indirect: | T n. 

 

n Test n Test 

0 x ≠ 0 5 x = y 

1 x > 0 6 x ≠ y 

2 x < 0 7 x > y 

3 x ≥ 0 8 x < y 

4 x ≤ 0 9 x ≥ y 

                                                           
* Four of the conditional tests can also be used for complex values, as explained in section 11 on page 132. 
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Following a conditional test, program execution follows the "Do if True" 

Rule: it proceeds sequentially if the condition is true, and it skips one 

instruction if the condition is false. A t instruction is often placed right 

after a conditional test, making it a conditional branch; that is, the t 

branch is executed only if the test condition is met. 

 

Flags 

Another conditional test for programming is a flag test. A flag is a status 

indicator that is either set (= true) or clear (= false). Again, execution 

follows the "Do if True" Rule: it proceeds sequentially if the flag is set, and 

skips one line if the flag is clear. 

The HP-15C has eight user flags, numbered 0 to 7, and two system flags, 

numbered 8 (Complex mode) and 9 (overflow condition). The system flags 

are discussed later in this section. All flags can be set, cleared, and tested as 

follows: 

 | F n will set flag number n (0 to 9). 

 | " n will clear flag number n. 

 | ? n will check if flag n is set. 

A flag n that has been set remains set until it is cleared either by a " 

n instruction or by clearing (resetting) Continuous Memory. 
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Examples 

Example: Branching and Looping 

A radiobiology lab wants to predict the 

diminishing radioactivity of a test amount of 
131

I, a radioisotope. Write a program to figure 

the radioactivity at 3-day intervals until a 

given limit is reached. The formula for Nt, the 

amount of radioisotope remaining after t days, 

is 

Nt = No (2
-t/k

), 

where k = 8 days, the half-life of 
131

I, and N0 is the initial amount. 

The following program uses a loop to calculate the number of millicuries 

(mci) of isotope theoretically remaining at 3-day intervals of decay. 

Included is a conditional test to check the result and end the program when 

radioactivity has fallen to a given value (a limit). 

The program assumes t1 – the first day of measurement – is stored in R0, N0 

– the initial amount of isotope – is stored in R1, and the limit value for 

radioactivity is stored in R2. 

Keystrokes Display  

| ¥ 000- Program mode. 

´ CLEAR M 000- (Optional.) 

´ b A  001-42,21,11 Each loop returns to this 
line. 

l 0 002-   45  0 Recalls current t which 
changes with each loop. 

´ © 003-   42 31 Pauses to display t. 

8 004-       8 k 

÷ 005-      10  

“ 006-      16 –t/k. 

2 007-       2  

®  008-      34  

Y
 009-      14 2

–t/k
. 
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Keystrokes Display  

l * 1 010-45,20, 1 Recall multiplication with the 
contents of R1 (N0), yielding Nt, 
the mci of 

131
I remaining after t 

days 

´© 011-   42 31 Pauses to display Nt. 

l 2 012-   45  2 Recalls limit value to X-register. 

| T 9 013-43,30, 9 x ≥ y ? Tests whether limit value 
(in X) meets or exceeds Nt  
(in Y). 

| n 014-   43 32 If so, program ends. 

3 015-       3 If not, program continues. 

O+ 0 016-44,40, 0 Adds 3 days to t in R0. 

tA 017-   22 11 Go to ―A‖ and repeat execution 
to find a new Nt from a new t. 

Notice that without lines 012 to 014, the loop would run indefinitely (until 

stopped from the keyboard). 

Let's run the program, using t1 = 2 days, N0 = 100 mci, and a limit value of 

half of N0 (50 mci). 

Keystrokes Display  

| ¥  Run mode (display will vary). 

2 O 0 2.0000 t1.  

100 O 1 100.0000 N0. 

50 O 2 50.0000 Limit value for Nt. 

´A 2.0000 t1. 

 84.0896 N1. 

 5.0000 t2. 

 64.8420 N2. 

 8.0000 t3. 

 50.0000 N3. 

 50.0000 Nt limit; program ends. 
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Example: Flags 

Calculations on debts or investments can be calculated in two ways: for 

payments made in advance (at the beginning of a given period) and for 

payments made in arrears (at the end of a given period). If you write a 

program to calculate the value (or ―present value‖) of a debt or investment 

with periodic interest and periodic payments, you can use a flag as a status 

indicator to tell the program whether to assume payments are made in 

advance or payments are made in arrears. 

Suppose you are planning the payment of your child's future college tuition. 

You expect the cost to be about $3,000/year or about $250/month. If you 

wanted to withdraw the monthly payments from a bank account yielding 

6% per year, compounded monthly (which equals 0.5% per month), how 

much must you deposit in the account at the start of the college years to 

fund monthly payments for the next 4 years? 

The formula is 

)(1
)(11

i
i

i
 PV

n












 




 
if payments are to be made 

each month in advance, 

and the formula is  











 




i

i
 PV

n)(11
 if payments are to be made 

each month in arrears. 

V is the total value of the deposit you must make in the account; 

P is the size of the periodic payment you will draw from the account; 

i is the periodic interest rate (here: ―periodic‖ means monthly, since interest 

is compounded monthly); and 

n is the number of compounding periods (months). 

The following program allows for either payment mode. It assumes that, 

before the program is run, P is in the Z-register, n is in the Y-register, and i 

is in the X-register. 



96 Section 8: Program Branching and Controls 

 

 

Keystrokes Display  

| ¥ 000- Program mode. 

´ bB 001-42,21,12 Start at "B" if payments to be 
made at the beginning. 

| " 0 002-43, 5, 0 Flag 0 clear (false); indicates 
advance payments. 

t 1 003-   22  1 Go to main routine. 

´ b E 004-42,21,15 Start at "E" if payments to be 
made at the end. 

| F 0 005-43, 4, 0 Flag 0 set (true); indicates 
payment in arrears. 

´ b 1 006-42,21, 1 Routine 1 (main routine). 

O1 007-   44  1 Stores i (from X-register). 

1 008-       1  

+ 009-      40 (1+i). 

® 010-      34 Puts n in X; (l + i) in Y. 

“ 011-      16 – n. 

y 012-      14 (1 + i)
-n

. 

“ 013-      16 – (1 + i)
-n

. 

1 014-       1  

+ 015-      40 1 – (1 + i)
-n

. 

l ÷ 1 016-45,10, 1 Recall division with R1 (i) to 
get [l– (l + i)

-n
]/i. 

* 017-      20 Multiplies quantity by P. 

| ? 0 018-43, 6, 0 Flag 0 set? 

| n 019-   43 32 End of calculation if flag 0 set 
(for payments in arrears). 

l 1 020-   45  1 Recalls i. 

1 021-       1  

+ 022-      40 (1 + i). 

* 023-      20 Multiplies quantity by final 
term. 

| n 024-   43 32 End of calculation if flag 0 
clear. 
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Now run the program to find the total amount needed in an account from 

which you want to take $250/month for 48 months. Enter the periodic 

interest rate as a decimal fraction, that is, 0.005 per month. First find the 

sum needed if payments will be made at the beginning of the month 

(payments in advance), then calculate the sum needed if payments will be 

made at the end of the month (in arrears). 

Keystrokes Display  

|¥  Set to Run mode. 

250 v 250.0000 Monthly payment. 

48 v 48.0000 Payment periods (4 years × 12 

months). 

.005 0.005 Monthly interest rate as a 

decimal fraction. 

´ B 10,698.3049 Deposit necessary for 

payments to be made in 

advance. 

(Repeat stack entries.)   

´ E 10,645.0795 Deposit necessary for payment to 

be made in arrears. (The 

difference between this deposit 

and the tuition cost ($12,000) 

represents interest earned on the 

deposit!) 

Further Information 

Go to 

In contrast to the nonprogrammable sequence t “ nnn, the 

programmable sequence t label cannot be used to branch to a line 

number, but only to program label (a line containing ´ b label).
*
 

Execution continues from the point of the new label, and does not return to 

the original routine unless given another t instruction.  

t label can also be used in Run mode (that is, from the keyboard) to 

move to a labeled position in program memory. No execution occurs. 

                                                           
* It is possible to branch under program control to a particular line number by using indirect addressing, 

discussed in section 10. 
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Looping 

Looping is an application of branching which uses a t instruction to 

repeat a portion of the program. A loop can continue indefinitely, or may be 

conditional. A loop is frequently used to repeat a calculation with different 

variables. At the same time, a counter, which increments with each loop, 

may be included to keep track of loop iterations. This counter can then be 

checked with a conditional test to determine when to exit the loop. (This is 

shown in the example on page 112.) 

Conditional Branching 

There are two general applications for conditional branching. One is to 

control loops, as explained above. A conditional test can check for either a 

certain calculated value or a certain loop count. 

The other major use is to test for options and pursue one. For example, if a 

salesperson made a variable commission depending on the amount of sale, 

you could write a program which takes the amount of sale, compares it to a 

test value, and then calculates a specific commission depending on whether 

the sale is less than or greater than the test value. 

Tests. A conditional test takes what is in the X-register (“x”) and compares 

it either to zero (such as ~) or to “y”, that is, what is in the Y-register 

(such as £). For an x:y comparison, therefore, you must have the x- and 

y-values juxtaposed in the X- and Y-registers. This might require that you 

store a test value and then recall it (bringing it into the X-register). Or, the 

value might be in the stack and be moved, as necessary, using ®, ), 

or (. 

Tests With Complex Numbers and Matrix Descriptors. Four of the 

conditional tests also work with complex numbers and matrix descriptors: 

~, T 0 (x≠ 0), T 5 (x = y), and T 6 (x≠ y). Refer to 

sections 11 and 12 for more information. 

Flags 

As a conditional test can be used to pick an option by comparing 

two numbers in a program, a flag can be used to pick an option externally. 

Usually, a flag is set or cleared first thing in a program by choosing a 

different starting point (using different labels) depending on the condition 

or mode you want (refer to the example on page 95). 
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In this way, a program can accommodate two different modes of input, such 

as degrees and radians, and make the correct calculation for the mode 

chosen. You set a flag if a conversion needs to be made, for instance, and 

clear it if no conversion is needed. 

Suppose you had an equation requiring temperature input in degrees Kelvin, 

although sometimes your data might be in degrees Celsius. You could use a 

program with a flag to allow either a Kelvin or Celsius input. In part, such a 

program might include: 

´ bC Start program at ―C‖ for degrees Celsius. 

| " 7 Flag 7 cleared (=false). 

t 1  

´ b Á Start program at ―D‖ for degrees Kelvin. 

| F 7 Flag 7 set (=true). 

´ b 1 (Assuming temperature in X-register.) 

| ? 7 Checks for flag 7 (checks for Celsius or Kelvin 

input). 

t 2 If set (Kelvin input), goes to a later routine, skipping 

the next few instructions. 

2 If cleared (Celsius input), adds 273 to the 

7 value in the X-register, since °K = °C + 273. 

3  

+  

´ b 2 Calculation continues for both modes. 

⋮  

The System Flags: Flags 8 and 9 

Flag 8. Setting flag 8 will activate Complex mode (described in section 11), 

turning on the C annunciator. If another method is used to activate Complex 

mode, flag 8 will automatically be set. Complex mode is deactivated only 

by clearing flag 8; flag 8 is cleared in the same manner as the other flags. 
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Flag 9. An overflow condition (described on page 61) automatically sets 

flag 9. Flag 9 causes the display to blink or, if a program is running, waits 

until execution is complete and then starts blinking the display. 

Flag 9 may be cleared in three ways: 

 Press | " 9 (the common procedure for clearing flags). 

 Press −. This will only clear flag 9 and stop the blinking—it will 

not clear the display. 

 Turn the calculator off. (Flag 9 is not cleared if the calculator turns 

itself off.) 

If you set flag 9 manually (F 9), it causes the display to blink irrespective 

of the overflow status of the calculator. As usual, a program will run to 

completion before the display starts blinking. Therefore, flag 9 can be used 

as a programming tool to provide a visual signal for a selected condition. 
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Section 9 

Subroutines 

When the same set of instructions needs to be used at more than one point 

in a program, memory space can be conserved by storing those instructions 

as a single subroutine. 

The Mechanics 

Go To Subroutine and Return 

The G (go to subroutine) instruction is executed in the same way as the 

t branch, with one major difference: it establishes a pending return 

condition. G label, like t label,
*
 transfers program execution to the 

line with the corresponding label (A to E, 0 to 9 or .0 to .9). However, 

execution then continues until the first subsequent n instruction is 

encountered – at which point execution transfers back to the instruction 

immediately following the last G instruction, and continues on from 

there. 

 Subroutine Execution  

 ´bA  ´b.1  

     

     

 G.1    

     

     

 |n  |n  

 END  RETURN  

Execution transfers to line 000  

and halts. 

Execution transfers back to 

original routine after 
G.1 

 

                                                           
* A G or t instruction followed by a letter label is an abbreviated key sequence (no ´ 

necessary). Abbreviated key sequences are explained on page 78. 
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Subroutine Limits 

A subroutine can call up another subroutine, and that subroutine can call up 

yet another subroutine. This ―subroutine nesting‖—the execution of a 

subroutine within a subroutine—is limited to stack of subroutines seven 

levels deep (this does not count the main program level). The operation of 

nested subroutines is as shown below: 

Main Program 

bA  b1  b2  b3  b4 

         

         

G1    G3     

  G2    G4   

         

         

n  n  n  n  n 

End         

 

Examples 

Example: Write a program to 

calculate the slope of the secant line 

joining points (x1, y1) and (x2, y2) on 

the graph shown, where y = x
2
 - sin x 

(given x in radians). 

The secant slope is: 

12

1
2

12
2

2

12

12 )sin ()sin (
or ,

xx

xxxx

xx

yy









 
The solution requires that the equation for y be evaluated twice—once for y1 

and once for y2, given the data input for x1 and x2. Since the same 

calculation must be made for different values, it will save program space to 

call a subroutine to calculate y. 

The following program assumes that x1 has been entered into the Y-register 

and x2 into the X-register. 
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MAIN PROGRAM 

|¥   

´ CLEAR M (Not programmable.) 

000-  

001- ´ b 9 Start main program. 

002- | R    Radians mode. 

003- O 0 Stores x2 in R0. 

004- ®  Brings x1 into X; x2 into Y. 

005- O - 0 (x2 - x1) in R0. 

006- G .3 Transfer to subroutine ―.3‖ with x1. 

  
 Return from subroutine ―.3‖. 

  
007- “  - y1. 

008- ® Brings x2 into X-register. 

009- G .3 Transfer to subroutine with x2. 

  
 Return from subroutine ―.3‖. 

  
010- +  y2 - y1. 

011- l ÷ 0 Recalls (x2 – x1) from R0 and 

calculates (y2 - y1)/(x2 - x1). 

012- | n Program end (return to line 000). 

SUBROUTINE  

013- ´ b .3 Start subroutine .3. 

014- | x x
2
.
 

015- | 
 K Recall x. 

016- [ sin x. 

017- -   x 
2
 – sin x, which equals y. 

018- | n Return to origin in main program. 

Calculate the slope for the following values of x1 and x2: 0.52, 1.25; -1, 1; 

0.81, 0.98. Remember to use G 9 (rather than ´ 9) when addressing a 

routine with a digit label. 

Answers: 1.1507; -0.8415; 1.1652. 
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Example: Nesting. The following subroutine, labeled ―.4‖, calculates the 

value of the expression 2222 tzyx   as part of a larger calculation in a 

larger program. The subroutine calls upon another subroutine (a nested 

subroutine), labeled ―.5‖, to do the repetitive squaring. 

The program is executed after placing the variables t, z, y, and x into the T-, 

Z-, Y-, and X-registers. 

Keystrokes  

´ b.4 Start of main 

 subroutine. 

| x  x
2
. 

G.5 Calculates y
2
 and 

 

 x
2
 + y

2
. 

G.5               Calculates z
2
 and 

 

 X
2
 + y

2
 + z

2
. 

G.5               Calculates t
2
 and 

 x
2
 + y

2
 + z

2
 + t

2
. 

¤                   2
 

2
  

2
  

2
t zyx   

| n End of main subroutine; 

 returns to main program. 

  

´ b.5 Start of nested 

 subroutine. 

®  

| x Calculates a square and 

+ adds it to current sum of squares. 

| n End of nested sub-routine; returns 

to main subroutine. 

If you run the subroutine (with its nested subroutine) alone using x = 4.3, 

y = 7.9, z = 1.3, and t = 8.0, the answer you get upon pressing G.4 is 

12.1074. 
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Further Information 

The Subroutine Return 

The pending return condition means that the n instruction occurring 

subsequent to a G instruction causes a return to the line following the 

G rather than a return to line 000. This is what makes a subroutine 

useful and reuseable in different parts of a program: it will always return 

execution to where it branched from, even as that point changes. The only 

difference between using a G branch and a t branch is the transfer 

of execution after a n. 

Nested Subroutines 

If you attempt to call a subroutine that is nested more than seven levels 

deep, the calculator will halt and display Error 5 when it encounters the 

G instruction at the eighth level. 

Note that there is no limitation (other than memory size) on the number of 

nonnested subroutines or sets of nested subroutines that you may use. 
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Section 10 

The Index Register  

and Loop Control 

The Index register (RI) is a powerful tool in advanced programming of the 

HP-15C. In addition to storage and recall of data the Index register can use 

an index number to: 

 Count and control loops. 

 Indirectly address storage registers, including those beyond R.9 

(R19). 

 Indirectly branch to program line numbers, as well as to labels. 

 Indirectly control the display format. 

 Indirectly control flag operations. 

The V and % Keys 

Direct Versus Indirect Data Storage With the Index Register 

The Index register is a data storage register that can be used directly,  with 

V, or indirectly, with %.
*
 The difference is important to note: 

 V  % 

The V function uses the 

number itself in the Index 

register. 

The % function uses the absolute 

value of the integer portion of the 

number in the Index register to 

address another data storage 

register. This is called indirect 

addressing. 

                                                           
* Note that the matrix functions and complex functions use the V and % keys also, but for different 

purposes. Refer to sections 11 and 12 for their usage. 
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Indirect Program Control With the Index Register 

The V key is used for all forms of indirect program control other than 

indirect register addressing. Hence, V (not %) is used for indirect 

program branching, indirect display format control, and indirect flag 

control. 

Program Loop Control 

Program loop counting and control can be carried out in the HP-15C by any 

storage register: R0 through R9, R.0 through R.9, or the Index register (V). 

Loop control can also be carried out indirectly with %. 

The Mechanics 

Both V and % can be used in abbreviated key sequences, omitting the 

preceding ´ prefix (as explained on page 78). 

Index Register Storage and Recall 

Direct. O V and l V. Storage and recall between the X-

register and the Index register operate in the same manner as with other data 

storage registers (page 42). 

Indirect. O (or l) % stores into (or recalls from) the data storage 

register whose number is addressed by the integer portion of the value (0 to 

65) in the Index register. See the table below and on the next page. 

Indirect Addressing 

If RI contains: % will address: 
t V or G V will 

transfer to:* 

±  0 R0 ´ b 0 

⋮   ⋮  ⋮  

9 R9 ´ b 9 

10 R.0    "      "     .0 

11 R.1    "      "     .1 

⋮   ⋮  ⋮  

19 R.9 ´ b .9 

20 R20    "      "   A 

*For RI  0 only. 

(Continued on next page.) 
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Indirect Addressing 

If RI contains: % will address: 
t V or GV will 

transfer to:* 

21 R21 ´ b B 

22 R22    "     "     C 

23 R23    "     "     Á 

24 R24    "     "     E 

⋮  ⋮  — 

65 R65 — 

*For RI  0 only. 

Index Register Arithmetic 

Direct. O or l { + , -, *, ÷ } V. Storage or recall 

arithmetic operates with the Index register in the same manner as upon 

other data storage registers (page 43). 

Indirect. O or l { + , -, *, ÷ } % carries out storage 

or recall arithmetic with the contents of the data storage register addressed 

by the integer portion of the number (0 to 65) in the Index register. See the 

above table. 

Exchanging the X-Register 

Direct. ´ X V exchanges contents between the X-register and the 

Index register. (Works the same as X n does with registers 0 through .9.) 

Indirect. ´ X % exchanges contents between the X-register and the 

data storage register addressed by the number (0 to 65) in the Index register. 

See the above table. 

Indirect Branching With V  

The V key—but not the % key—can be used for indirect branching 

(tV) and subroutine calls (GV). (Only the integer portion of 

the number in RI is used.) (% is only used for indirect addressing of 

storage registers). 
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To Labels. If the RI value is positive, t V and G V will 

transfer execution to the label which corresponds to the number in the Index 

register (see the above table). 

For instance, if the Index register contains 20.00500, then a tV 

instruction will transfer program execution to ´b A. See the chart 

on page 107. 

To Line numbers. If the RI value is negative, tV causes branching 

to that line number (using the absolute value of the integer portion of the 

value in RI). 

For instance, if RI contains –20.00500, then a tV instruction will 

transfer program execution to program line 020. 

Indirect Flag Control With V 

F V, " V, or ? V will set, clear, or test the flag (0 to 9) 

specified in RI (by the magnitude of the integer portion). 

Indirect Display Format Control With V 

´ • V, ´ i V, and ´ ^ V will format the 

display in their customary manner (refer to pages 58–59), using the number 

in RI (integer part only) for n, which must be from 0 to 9.
*
 

Loop Control With Counters: I and e 

The I (increment and skip if greater than) and e (decrement and 

skip if less than or equal to) functions control loop execution by referencing 

and altering a loop control number in a given register. Program execution 

(skipping a line or not) then depends on that number. 

The key sequence is ´ { I, e } register number. This number is 

0 to 9, .0 to .9, V ,or %. 

The Loop Control Number. The format of the loop control number is: 

nnnnn.xxxyy, where 

±nnnnn is the current counter value, 

xxx is the test (goal) value, and 

yy Is the increment of decrement value 

                                                           
* Except when using f (section 14) 
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For example, the number 0.05002 in a storage register represents: 

nnnnn x x x y y 

    0.0 5 0 0 2 

Start count at zero. Count by twos. 

Count up to 50. 

I and e Operation. Each time a program encounters I or 

e it increments or decrements nnnnn (the integer portion of the loop 

control number), thereby keeping count of the loop iterations. It compares 

nnnnn to xxx, the prescribed test value, and exits the loop by skipping the 

next line if the loop counter (nnnnn) is either greater than (I) or less 

than or equal to (e) the test value (xxx). The amount that nnnnn is 

incremented or decremented is specified by yy. 

With these functions (as opposed to the other conditional tests), the rule is 

―Skip if True‖. 

False (nnnnn  xxx)  True (nnnnn > xxx) 

 instruction  

 ´IV  

loop t. 1  

 instruction exit loop 

For I: given nnnnn.xxxyy, increment nnnnn to nnnnn + yy, compare 

it to xxx, and skip the next program line if the new value satisfies nnnnn > 

xxx. This allows you to exit a loop at this point when nnnnn becomes 

greater than xxx. 
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False (nnnnn > xxx)  True (nnnnn  xxx) 

 instruction  

 ´sV  

loop t. 1  

 Instruction exit loop 

For e: given nnnnn.xxxyy, decrement nnnnn to nnnnn - yy, compare 

it to xxx, and skip the next program line if the new value satisfies nnnnn ≤ 

xxx. This allows you to exit a loop at this point when nnnnn becomes less 

than or equal to xxx. 

For example, loop iterations will alter these control numbers as follows: 

Iterations 

Operation 0 1 2 3 4 

I 0.00602 2.00602 4.00602 6.00602 8.00602 

     (skip next 
line) 

e 6.00002 4.00002 2.00002 0.00002  

    (skip next 
line) 

 

Examples 

Examples: Register Operations 

Storing and Recalling 

Keystrokes Display  

´ CLEAR Q  Clears all storage registers. 

12.3456 12.3456  

O V 12.3456 Stores in RI. 

7 ¤ 2.6458  

O% 2.6458 Storage in R.2 by indirect addressing 

(RI = 12.3456). 

lV 12.3456 Recalls contents of RI. 
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Keystrokes Display  

l % 2.6458 Indirectly recalls contents of R.2. 

´ X .2 2.6458 Check: same contents recalled by 

directly addressing R.2. 

Exchanging the X-Register 

Keystrokes Display  

´ X V 12.3456 Exchanges contents of RI and X-

register. 

l V 2.6458 Present contents of RI. 

´ X% 0.0000 Exchanges contents of R2 (which is 

zero) with X. 

l % 2.6458  

´ X 2 2.6458 Check: directly address R2. 

Storage Register Arithmetic 

Keystrokes Display  

10 O + V 10.0000 Adds 10 to RI. 

l V 12.6458 New contents of RI (= old + 10). 

| $ O ÷ 
% 

3.1416 Divides contents of R.2 by . 

l% 0.8422 New contents of R.2. 

´ X.2 0.8422 Check: directly address R.2. 

Example: Loop Control with e 

Remember the program in section 8 which used a loop to calculate 

radioactive decay? (Refer to page 93.) This program used a test condition (x 

≥ y?) to exit the loop when the calculated result passed the given limit (50). 

As we've seen in this section, there's another way to control loop execution: 

through a stored loop counter that is monitored by the I or e 

function. 
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Here is a revision of the original radioisotope decay program. This  

time, we will limit the program to three executions of the loop rather  

than setting a specific limit value. This example uses e with a  

loop control number in R2 of  

3.0 0 0 0 1. 

     initial loop counter          decrement value 

      test (goal) value 

Make the following changes to the program (assuming it is in memory). A 

loop counter will be stored in R2 and a line number in the Index register. 

Keystrokes Display  

| ¥ 000- Program mode. 

t“013 013-43,30, 9 The second of the two loop 

test condition lines. 

−− 011-   42 31 Delete lines 013 and 012. 

´e 2 012-42, 5, 2 Add your loop counter 

function (counter stored in 

R2). 

t V 013-   22 25 Go to given line number 

(015). 

Now when the loop counter (stored in R2) has reached zero, it will skip line 

013 and go on to 014, the n instruction, thereby ending the program. If 

the loop counter has not yet decreased to zero, execution continues with line 

013. This branches to line 015 and continues the program and the looping. 

To run the program, put t1 (day 1) in R0, N0 (initial isotope batch) in R1 the 

loop counter in R2, and the line number for branching in the Index register. 

Keystrokes Display  

| ¥  Run mode. 

2 O 0 2.00000 t1. 

100 O 1 100.0000 N0. 

3.000001 O 2 3.0000 Loop counter. (This 
instruction could also be 
programmed.) 
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Keystrokes Display 

15 “ O 

V ´ A 

-15.0000 Branch line number. 

 2.0000 Running program loop counter  

= 3. 

  84.0896  

  5.0000 Loop counter = 2. 

  64.8420  

  8.0000 Loop counter = 1. 

  50.0000  

  50.0000 Loop counter = 0; program ends. 

Example: Display Format Control 

The following program pauses and displays an example of • display 

format for each possible decimal place. It utilizes a loop containing a s 

instruction to automatically change the number of decimal places. 

Keystrokes 

 

|¥  

´CLEAR M  

´ b B  

9 nnnnn = 9. Therefore, xxx = 0 and by default yy 

= 1 (yy cannot be zero). 

O V  

´ b 0  

´ • V  

l V  

´ © Displays current value of nnnnn. 

´ e V Value in RI is decremented and tested. Skip a line 

if nnnnn  test value. 

t 0 Continue loop if nnnnn > test value (0). 

| T 1 Tests whether value in display is greater than 0, so 

loop will continue when nnnnn has reached 0 but 

display still only shows 1.0. 
t 0 

| n  
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To display fixed point notation for all possible decimal places on the 

HP-15C: 

Keystrokes Display  

| ¥  Run mode. 

´ B 9.000000000  

 8.00000000  

 7.0000000  

 6.000000  

 5.00000  

 4.0000  

 3.000  

 2.00  

 1.0  

 0. Display at ´©instruction. 

 0. Display when program halts. 

Further Information 

Index Register Contents 

Any value stored in the Index register can be referenced in three different 

ways: 

 Using V like any other storage register. The value in RI can be 

manipulated as it is: stored, recalled, exchanged, added to, etc. 

 Using V as a control number. The absolute value of the integer 

portion in RI is a separate entity from the fractional portion. For indirect 

branching, flag control, and display format control with V, only this 

portion is used. For loop control, the fractional portion is also used, but 

separately from the integer portion.
*
 

 Using % as a reference to the contents of another storage register. 

The % key uses the indirect addressing system shown in the tables on 

pages 107 and 108. (In turn, the contents of that second register may be 

used as a loop control number, in the fashion described above.) 

                                                           
*  This is also true for the value in any storage register used for indirect loop control. 
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I and e 

For the purpose of loop control, the integer portion (the counter value) of 

the stored control number can be up to five digits long (nnnnn.xxxyy). The 

counter value (nnnnn) is zero if not specified otherwise. 

xxx, in the decimal portion of the control number, must be specified as a 

three-digit number. (For example, ―5‖ must be ―005‖.) xxx is zero if not 

specified otherwise. Whenever I or e is encountered, nnnnn is 

compared internally to xxx, which represents the end level for incrementing 

or decrementing. 

yy must be specified as a two-digit number. yy cannot be zero, so if left (or 

specified) as 00, the value for yy defaults to 1. The value nnnnn is altered 

by the amount of yy each time the loop runs through I or e. Both 

yy and xxx are reference values, which do not change with loop execution. 

Indirect Display Control 

While you can use the Index register to format the display manually (that is, 

from the keyboard), this function is most commonly used in programming. 

This capability is especially valuable for the f function, for which 

accuracy can be stipulated by specifying the number of digits to be 

displayed (as described in section 14). 

There are, as usual, certain display limitations to keep in mind. Recall that 

any display format function merely alters the number of decimal places to 

which the display is rounded. In its memory, the calculator always retains a 

number in scientific notation as a 10-digit mantissa with a two-digit 

exponent. 

The integer portion of the number in the Index register specifies the number 

of decimal places to which the display is rounded. A number less than zero 

defaults to zero (zero decimal places displayed in • format), while a 

number greater than 9 defaults to 9 (9 decimal places displayed in •).* 

* Note that in i and ^ format modes, the maximum display is a seven-digit mantissa 

with a two-digit exponent. However, a format number greater than six (and less than or equal 

to nine) will alter the decimal place at which rounding occurs. (Refer to page 58-59.) 
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An exception is in the case of f where the display format number in RI 

may range from -6 to +9. (This is discussed in appendix E on page 247.) A 

number less than zero will not affect the display format, but will affect 

accuracy with this function. 
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Section 11 

Calculating With 

Complex Numbers 

The HP-15C enables you to calculate with complex numbers, that is, 

numbers of the form 

a + ib, 

where     a is the real part of the complex number, 

b is the imaginary part of the complex number, and 

1i . 

As you will see, the beauty of calculating with the HP-15C in Complex 

mode is that once the complex numbers are keyed in, most operations are 

executed in the same manner as with real numbers. 

The Complex Stack and Complex Mode 

Calculations with complex numbers are 

performed using a complex stack composed 

of two parallel four-register stacks (and two 

LAST X registers). One of these parallel 

stacks – referred to as the real stack – 

contains the real parts of complex numbers 

used in calculations. (This is the same stack 

used in ordinary calculations.) The other 

stack – referred to as the imaginary stack – 

contains the imaginary parts of complex 

numbers used in calculations. 

Creating the Complex Stack 

The imaginary stack is created (by converting five storage registers as 

described in appendix C) when you activate Complex mode; it does not 

exist when the calculator is not in Complex mode. 
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Complex mode is activated 

1) automatically, when executing ´ V or ´ }; or 

2) by setting flag 8, the Complex mode flag (|F 8). 

When the calculator is in Complex mode, the C annunciator in the display 

is lit. This tells you that flag 8 is set and the complex stack exists. In or out 

of Complex mode, the number appearing in the display is the number in the 

real X-register. 

Note: In Complex mode (signified by the C annunciator), the HP-

15C performs all trigonometric functions using radians. The 

trigonometric mode annunciator in the display (RAD, GRAD, or 

blank for Degrees) applies to two functions only: ; and : 

(as explained later in this section). 

Deactivating Complex Mode 

Since Complex mode requires the allocation of five registers from memory, 

you will have more memory available for programming and other advanced 

functions if you deactivate Complex mode when you are working solely 

with real numbers. 

To deactivate Complex mode, clear flag 8 (keystroke sequence: | " 

8). The C annunciator will disappear. 

Complex mode is also deactivated when Continuous Memory is reset (as 

described on page 63). In any case, deactivating Complex mode dissolves 

the imaginary stack, and all imaginary numbers there are lost. 

Complex Numbers and the Stack 

Entering Complex Numbers 

To enter a number with real and imaginary parts; 

1. Key the real part of the number into the display. 

2. Press v 

3. Key the imaginary part of the number into the display. 

4. Press ´ V. (If not already in Complex mode, this creates the 

imaginary stack and displays the C annunciator.) 
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Example: Add 2 + 3i and 4 + 5i. (The operations are illustrated in the stack 

diagrams following the keystroke listing.) 

Keystrokes Display  

´ • 4   

2 v 2.0000 Keys real part of first number 

into (real) Y-register. 

3 3 Keys imaginary part of first 

number into (real)  

X-register. 

´ V 2.0000 Creates imaginary stack; moves 

the 3 into the imaginary X-

register, and drops the 2 into the 

real X-register. 

4 v 4.0000 Keys real part of second number 

into (real) Y-register. 

5 5 Keys imaginary part of second 

number into (real) X-register. 

´ V 4.0000 Copies 5 from real  

X-register into imaginary  

X-register, copies 4 from real Y-

register into real X-register, and 

drops stack. 

+ 6.0000 Real part of sum. 

´ % (hold) 8.0000 Displays imaginary part 

            (release) 6.0000 of sum while the % key is held. 

(This also terminates digit entry.) 

The operation of the real and imaginary stacks during this process is 

illustrated below. (Assume that the stack registers have been loaded already 

with the numbers shown as the result of previous calculations). Note that 

the imaginary stack, which is shown below at the right of the real stack, is 

not created until ´ V is pressed. (Recall also that the shading of the 

stack indicates that those contents will be written over when the next 

number is keyed in or recalled.) 
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 Re Im  Re Im  Re Im  Re Im  Re Im 

T 9   8   7   7   7 0 

Z 8   7   6   6   7 0 

Y 7   6   2   2   6 0 

X 6   2   2   3   2 3 

Keys: 2 v 3 ´ V 

The execution of ´ V causes the entire stack to drop, the T contents to 

duplicate, and the real X contents to move to the imaginary X-register. 

When the second complex number is entered, the stacks operate as shown 

below. Note that v lifts both stacks. 
 

 Re Im  Re Im  Re Im  Re Im 

T 7 0  7 0  6 0  6 0 

Z 7 0  6 0  2 3  2 3 

Y 6 0  2 3  4 0  4 0 

X 2 3  4 0  4 0  5 0 

Keys: 4 v 5 
 

 Re Im  Re Im  Re Im 

T 6 0  6 0  6 0 

Z 2 3  6 0  6 0 

Y 4 0  2 3  6 0 

X 5 0  4 5  6 8 

 Keys: ´ V + 
 

A second method of entering complex numbers is to enter the imaginary 

part first, then use } and −. This method is illustrated under 

Entering Complex Numbers With −, page 127. 
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Stack Lift in Complex Mode 

Stack lift operates on the imaginary stack as it does on the real stack (the 

real stack behaves identically in and out of Complex mode). The same 

functions that enable, disable, or are neutral to lifting of the real stack will 

enable, disable, or be neutral to lifting of the imaginary stack. (These 

processes are explained in detail in section 3 and appendix B.) 

In addition, every nonneutral function, except − and ` causes the 

clearing of the imaginary X-register when the next number is entered. That 

is, these functions cause a zero to be placed in the imaginary X-register 

when the next number is keyed in or recalled. Refer to the stack diagrams 

above for illustrations. This feature allows you to execute calculator 

operations using the same key sequences you use outside of Complex 

mode.
*
 

Manipulating the Real and Imaginary Stacks 

} (real exchange imaginary). Pressing ´ } will exchange 

the contents of the real and imaginary X-registers, thereby converting the 

imaginary part of the number into the real part and vice-versa. The Y-, Z-, 

and T-registers are not affected. Press ´ } twice restore a number 

to its original form. 

} also activates Complex mode if it is not already activated. 

Temporary Display of the Imaginary X-Register. Press ´ % to 

momentarily display the imaginary part of the number in the X-register 

without actually switching the real and imaginary parts. Hold the key down 

to maintain the display. 

Changing Signs 

In Complex mode, the “ function affects only the number in the real X-

register – the imaginary X-register does not change. This enables you to 

change the sign of the real or imaginary part without affecting the other. To 

key in a negative real or imaginary part, change the sign of that part as you 

enter it. 

If you want to find the additive inverse of a complex number already in the 

X-register, however, you cannot simply press “ as you would outside 

                                                           
* Except for the : and ; functions, as explained in this section (page 133). 
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of Complex mode. Instead, you can do either of the following: 

 Multiply by -1. 

 If you don't want to disturb the rest of the stack, press “ ´ 

} “ ´ }. 

To find the negative of only one part of a complex number in the X-register: 

 Press “ to negate the real part only. 

 Press ´ } “ ´ } to negate the imaginary 

part only, forming the complex conjugate. 

Clearing a Complex Number 

Inevitably you will need to clear a complex number. You can clear only one 

part at a time, but you can then write over both parts (since − and ` 

disable the stack). 

Clearing the Real X-Register. Pressing − (or | `) with the 

calculator in Complex mode clears only the number in the real X-register; it 

does not clear the number in the imaginary X-register. 

Example: Change 6 + 8i to 7 + 8i and subtract it from the previous entry. 

(Use ´ } or ´ % to view the imaginary part in X.) Assume a, 

b, c and d represent parts of complex numbers. 

 Re Im  Re Im  Re Im  Re Im 

T a b  a b  a b  a b 

Z c d  c d  c d  a b 

Y 6 0  6 0  6 0  c d 

X 6 8  0 8  7 8  -1 -8 

Keys: −  7 -  (or other 
operation) 

Since clearing disables the stack (as explained above), the next number you 

enter will replace the cleared value. If you want to replace the real part with 

zero, after clearing use v or any other function to terminate digit 

entry (otherwise the next number you enter will write over the zero); the 

imaginary part will remain unchanged. You can then continue with any 

calculator function. 
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Clearing the Imaginary X-Register. To clear the number in the imaginary 

X-register, press ´ }, then press −. Press ´ } again to 

return the zero, or any new number keyed in, to the imaginary X-register. 

Example: Replace -1 -8i by -1 + 5i. 

 Re Im  Re Im  Re Im  Re Im  Re Im 

T a b  a b  a b  a b  a b 

Z c d  c d  c d  c d  c d 

Y e f  e f  e f  e f  e f 

X -1 -8  -8 -1  0 -1  5 -1  -1 5 

Keys: } − 5 } 

(continue with 
any operation) 

Clearing the Real and Imaginary X-Registers. If you want to clear or 

replace both the real and imaginary parts of the number in the X-register, 

simply press −, which will disable the stack, and enter your new number. 

(Enter zeros if you want the X-register to contain zeros.) Alternatively, if 

the new number will be purely real (including 0 + 0i), you can quickly clear 

or replace the old, complex number by pressing ) followed by zero or 

the new, real number. 

Example: Replace -1 + 5i with 4 + 7i. 

 Re Im  Re Im  Re Im  Re Im  Re Im 

T a b  a b  c d  c d  c d 

Z c d  c d  e f  e f  c d 

Y e f  e f  4 5  4 5  e f 

X -1 5  0 5  4 5  7 0  4 7 

Keys: − 4 v 7 ´ V 

(continue with 
any operation) 
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Entering Complex Numbers with −. The clearing functions − and 

` can also be used with } as an alternative method of entering 

(and clearing) complex numbers. Using this method, you can enter a 

complex number using only the X-register, without affecting the rest of the 

stack. (This is possible because − and ` disable stack lift.) 

Executing } will also create an imaginary stack if one is not already 

present. 

Example: Enter 9 + 8i without moving the stack and then find its square. 

Keystrokes Display  

(−) (0.0000) Prevents stack lift when the 

next digit (8) is keyed in. 

Omit this step if you'd rather 

save what's in X and lose 

what's in T. 

  

8 8 Enter imaginary part first. 

´ }  7.0000 Displays real part; Complex 

mode activated. 

− 0.0000 Disables stack. (Otherwise, it 

would lift following }.) 

9 9 Enters real part (digit entry not 

terminated). 

| x 17.0000 Real part. 

´ % (hold) 
(release) 

144.0000 Imaginary part. 

17.0000  

 Re Im  Re Im  Re Im  Re Im 

T a b  a b  a b  a b 

Z c d  c d  c d  c d 

Y e f  e f  e f  e f 

X 4 7  0 7  8 7  7 8 

Keys: − 8 ´ } 
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 Re Im  Re Im  Re Im  Re Im 

T a b  a b  a b  a b 

Z c d  c d  c d  c d 

Y e f  e f  e f  e f 

X 7 8  0 8  9 8  17 144 

Keys: − 9 | x 

Entering a Real Number 

You have already seen two ways of entering a complex number. There is a 

shorter way to enter a real number: simply key it (or recall it) into the 

display just as you would if the calculator were not in Complex mode. As 

you do so, a zero will be placed in the imaginary X-register (as long as the 

previous operation was not − or `, as explained on page 124). 

The operation of the real and imaginary stacks during this process is 

illustrated below. (Assume the last key pressed was not − or ` and 

the contents remain from the previous example.) 

 Re Im  Re Im  Re Im 

T a b  c d  e f 

Z c d  e f  17 144 

Y e f  17 144  4 0 

X 17 144  4 0  4 0 

Keys: 4 v (Followed by 
another number.) 
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Entering a Pure Imaginary Number 

There is a shortcut for entering a pure imaginary number into the X-register 

when you are already in Complex mode: key in the (imaginary) number and 

press ´ } 

Example: Enter 0 + 10i (assuming the last function executed was not − 

or `. 

Keystrokes Display  

10 10 Keys 10 into the displayed 

real X-register and zero into 

the imaginary X-register. 

´ } 0.0000 Exchanges numbers in real 

and imaginary X-registers. 

Display again shows that the 

number in the real X-

register is zero — as it 

should be for a pure 

imaginary number. 

The operation of the real and imaginary stacks during this process is 

illustrated below. (Assume the stack registers contain the numbers resulting 

from the preceding examples.) 

 
Re Im  Re Im  Re Im 

T e f  e f  e f 

Z 17 144  17 144  17 144 

Y 4 0  4 0  4 0 

X 4 0  10 0  0 10 

Keys: 10 ´} (Continue with 
any operation.) 

Note that pressing ´ } simply exchanges the numbers in the real 

and imaginary X-registers and not those in the remaining stack registers. 
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Storing and Recalling Complex Numbers 

The O and l functions act on the real X-register only; therefore, 

the imaginary part of a complex number must be stored or recalled 

separately. The keystrokes to do this can be entered as part of a program 

and executed automatically.* 

To store a + ib from the complex X-register to R1 and R2, you can use the 

sequence 

O 1  ´}  O 2 

You can follow this by ´ } to return the stack to its original 

condition if desired. To recall a + ib from R1 and R2 you can use the 

sequence 

l 1    l 2    ´ V 

If you wish to avoid disturbing the rest of the stack, you can recall the 

number using the sequence 

l 2    ´ }   −   l 1 

(In Program mode, use | ` instead of −.) 

Operations With Complex Numbers 

Almost all functions performed on real numbers will yield the same answer 

whether executed in or out of Complex mode,† assuming the result is also 

real. In other words, Complex mode does not restrict your ability to 

calculate with real numbers. 

Any functions not mentioned below or in the rest of this section 

(Calculating With Complex Numbers) ignore the imaginary stack. 

 

* You can use the HP-15C matrix function, described in section 12, to make storing and 

recalling complex numbers more convenient. By dimensioning a matrix to be n×2, n 

complex numbers can be stored as rows of the matrix. (This technique is demonstrated in 
the HP-15C Advanced Functions Handbook, section 3, under Applications.) 

† The exceptions are : and ;, which operate differently in Complex mode in order to 

facilitate converting complex numbers to polar form (page 133). 
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One-Number Functions 

The following functions operate on both the real and imaginary parts of the 

number in the X-register, and place the real and imaginary parts of the 

answer back into those registers. 

¤ x N o ∕ @ ' a : ; 

All trigonometric and hyperbolic functions and their inverses also belong to 

this group.* 

The a function gives the magnitude of the number in the X-registers 

(the square root of the sum of the squares of the real and imaginary parts); 

the imaginary part of the magnitude is zero. 

: converts to polar form and ; converts to rectangular form, 

as described later in this section (page 133). 

For the trigonometric functions, the calculator considers numbers in the real 

and imaginary X-registers to be expressed in radians—regardless of the 

current trigonometric mode. To calculate trigonometric functions for values 

given in degrees, use r to convert those values to radians before 

executing the trigonometric function. 

Two-Number Functions 

The following functions operate on both the real and imaginary parts of the 

numbers in the X- and Y-registers, and place the real and imaginary parts of 

the answer into the X-registers. Both stacks drop, just as the ordinary stack 

drops after a two-number function not in Complex mode. 

+ - * ÷ y 

Stack Manipulation Functions 

When the calculator is in Complex mode, the following functions 

simultaneously manipulate both the real and imaginary stacks in the same 

way as they manipulate the ordinary stack when the calculator is not in 

Complex mode. The ® function. for instance, will exchange both the 

real and imaginary parts of the numbers in the X- and Y-registers. 

® ) ( v K 

* Refer to the HP-15C Advanced Functions Handbook for definitions of complex 

trigonometric functions and further information about doing calculations in Complex mode. 
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Conditional Tests 

For programming, the four conditional tests below will work in the complex 

sense: ~ and T 0 compare the complex number in the (real and 

imaginary) X-registers to 0 + 0i, while T 5 and T 6 compare the 

complex numbers in the (real and imaginary) X- and Y-registers. All other 

conditional tests besides those listed below ignore the imaginary stack. 

~  T 0 (x ≠ 0)  T 5 (x = y) T 6 (x ≠ y) 

Example: Complex Arithmetic. The characteristic impedance of a ladder 

network is given by an equation of the form 

B

A
Z 0 , 

where A and B are complex numbers. Find Z0 for the hypothetical values 

A = 1.2 + 4.7i and B = 2.7 + 3.2i. 

Keystrokes Display  

1.2 v 4.7 ´ V 1.2000 Enters A into real and 

imaginary X-registers. 

2.7 v 3.2 ´ V 2.7000 Enters B into real and 

imaginary X-registers, 

moving A into real and 

imaginary Y-registers. 

÷ 1.0428 Calculates A/B. 

¤ 1.0491 Calculates Z0 and 

displays real part. 

´ %  (hold) 0.2406 Displays imaginary part 

of Z0 while % is held 

down. 

(release) 1.0491 Again displays real part 

of Z0. 
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Complex Results from Real Numbers 

In the preceding examples, the entry of complex numbers had ensured the 

(automatic) activation of Complex mode. There will be times, however, 

when you will need Complex mode to perform certain operations on real 

numbers, such as 5 . (Without Complex mode, such as operation would 

result in an Error 0 – improper math function.) To activate Complex mode 

at any time and without disturbing the stack contents, set flag 8 before 

executing the function in question.
*
 

Example: The arc sine (sin
-1

) of 2.404 normally would result in an Error 0. 

Assuming 2.404 in the X-register, the complex value arc sin 2.404 can be 

calculated as follows: 

Keystrokes Display  

| F 8  Activates Complex Mode. 

| ,  1.5708 Real part of 

arc sin 2.404. 

´ %  (hold) -1.5239 Imaginary part of 

arc sin 2.404. 

(release)  1.5708 Display shows real part 

again when % is 

released. 

Polar and Rectangular Coordinate Conversions 

In many applications, complex numbers are represented in polar form, 

sometimes using phasor notation. However, the HP-15C assumes that any 

complex numbers are in rectangular form. Therefore, any numbers in polar 

or phasor form must be converted to rectangular form before performing a 

function in Complex mode. 

                                                           
* Pressing ´ } twice will accomplish the same thing. The sequence ´ V is not used because 

it would combine any numbers, in the real X-. and Y-registers into a single complex number. 
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a + ib = 

r (cos θ + i sin θ) = re
iθ

 
(polar) 

r θ (phasor) 

 

; and : can be used to interconvert the rectangular and polar forms of 

a complex number. They operate in Complex mode as follows: 

´ 
; 

converts the polar (or phasor) form of a complex number to its 

rectangular form by replacing the magnitude r in the real X-

register with a, and replacing the angle θ in the imaginary X-

register with b. 

| 
: 

converts the rectangular coordinates of a complex number to the 

polar (or phasor) form by replacing the real part a in the real X-

register with r, and replacing the imaginary part b in the 

imaginary X-register with θ. 

 

These are the only functions in Complex mode that are affected by the 

current trigonometric mode setting. That is, the angular units for θ must 

correspond to the trigonometric mode indicated by the annunciator 

(or absence thereof). 
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Example: Find the sum 2(cos 65° + i sin 65°) + 3(cos 40° + i sin 40°) and 

express the result in polar form, (In phasor form, evaluate 2 65° + 

3 40°.) 

Keystrokes Display  

| D  Sets Degrees mode for any polar-

rectangular conversions. 

2 v 2.0000  

65 ´ V 2.0000 C annunciator displayed; 

Complex mode activated.   

´ ; 0.8452 Converts polar to rectangular 

form; real part (a) displayed. 

3 v 3.0000  

40 ´ V 3.0000  

´ ; 2.2981 Converts polar to rectangular 

form; real part (a) displayed. 

+ 3.1434  

| : 4.8863 Converts rectangular to polar 

form; r displayed. 

´%   (hold) 49.9612 θ (in degrees). 

(release) 4.8863  

Problems 

By working through the following problems, you will see that calculating 

with complex numbers on the HP-15C is as easy as calculating with real 

numbers. In fact, once your numbers are entered, most mathematical 

operations will use exactly the same keystrokes. Try it and see! 

1. Evaluate: 
)54(2 ) 52(4

3
)68( 2

ii

ii




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Keystrokes Display  

2 ´ }  0.0000 2i. Display shows real part. 

8 “ v -8.0000  

6 ´ V -8.0000 -8 + 6i. 

3 Y  352.0000 (-8 + 6i)
3
. 

* -1.872.0000 2 i (-8 + 6i)
3
. 

4 v  4.0000  

5 ¤  2.2361  

2 “ * -4.4721 52 . 

´ V  4.0000 i524  . 

÷ -295.4551 

i

ii

5 2 - 4

3)6  (-82 
. 

2 v 5 ¤  2.2361  

4 “ * -8.9443  

´ V  2.0000 i542  . 

÷  9.3982 Real part of result. 

´ % -35.1344 
Answer: 9.3982 -35.1344i. 

  9.3982 
 

2. Write a program to evaluate the function 
35

12






z

z
ω  for different 

values of z. ( ω represents a linear fractional transformation, a class of 

conformal mappings.) Evaluate ω for z = l+2i. 

 
(Answer: 0.3902 + 0.0122i. One possible keystroke sequence is: ´ 

b A v v 2 * 1 + ® 5 * 3 + ÷ 

¦ ´ } | n.) 

3. Try your hand at a complex polynomial and rework the example on 

page 80. You can use the same program to evaluate P(z) = 5z
4
 + 2z

3
, 

where z is some complex number. 

 
Load the stack with z = 7 + 0i and see if you get the same answer as 

before. (Answer: 12,691.0000 + 0.0000i.) 

  

 Now run the program for z = 1 + i. (Answer -24.0000 + 4.0000i.) 
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For Further Information 

The HP-15C Advanced Functions Handbook presents more detailed and 

technical aspects of using complex numbers in various functions with the 

HP-15C. Applications are included. The topics include: 

 Accuracy considerations. 

 Principal branches of multi-valued functions. 

 Complex contour integrals. 

 Complex potentials. 

 Storing and recalling complex numbers using a matrix. 

 Calculating the nth roots of a complex number. 

 Solving an equation for its complex roots. 

 Using _ and f in Complex mode. 
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Section 12 

Calculating With Matrices 

The HP-15C enables you to perform matrix calculations, giving you the 

capability to handle advanced problems with ease. The calculator can work 

with up to five matrices, which are named A through E since they are 

accessed using the corresponding A through E keys. The HP-15C lets 

you specify the size of each matrix, store and recall the values of matrix 

elements, and perform matrix operations – for matrices with real or 

complex elements. (A summary of matrix functions is listed at the end of 

this section.) 

A common application of matrix calculations is solving a system of linear 

equations. For example, consider the equations 

3.8x1 + 7.2x2 =  16.5 

1.3x1  - 0.9x2 = -22.1 

for which you must determine the values of x1 and x2. 

These equations can be expressed in matrix form as AX = B, where 





















2

1
     , 

0.91.3

7.2   3.8

x

x
XA , and   










22.1

16.5   
B . 

The following keystrokes show how easily you can solve this matrix 

problem using your HP-15C. (The matrix operations used in this example 

are explained in detail later in this section.) 

First, dimension the two known matrices, A and B, and enter the values of 

their elements, from left to right along each row from the first row to the 

last. Also, designate matrix C as the matrix that you will use to store the 

result of your matrix calculation (C = X). 
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Keystrokes Display  

| " 8  Deactivates Complex 

mode. 

2 v ´ m A  2.0000 Dimensions matrix A 

to be 2×2. 

´ > 1  2.0000 Prepares for automatic 

entry of matrix 

elements in User mode. 

´ U  2.0000 (Turns on the USER 

annunciator.) 

3.8 O A  A     1,1 Denotes matrix A, row 

1, column 1. (A display 

like this appears 

momentarily as you 

enter each element and 

remains as long as you 

hold the letter key.) 

  3.8000 Stores a11. 

7.2 O A  7.2000 Stores a12. 

1.3 O A  1.3000 Stores a21. 

.9 “ O A -0.9000 Stores a22. 

2 v 1 ´ m 
B 

 1.0000 Dimensions matrix B to 

be 2×l. 

16.5 O B  16.5000 Stores b11. 

22.1 “ O B -22.1000 Stores b21. 

´ < C -22.1000 Designates matrix C 

for storing the result. 

Using matrix notation, the solution of the matrix equation AX = B is 

X = A
-1

B 

where A
–1

 is the inverse of matrix A. You can perform this operation by 

entering the ―descriptors‖ for matrices B and A into the Y- and X-registers 

and then pressing ÷. (A descriptor shows the name and dimensions of a 

matrix.) Note that if A and B were numbers, you could calculate the answer 

in a similar manner. 
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Keystrokes Display  

l > B b 2 1 Enters descriptor for B, the 2×1 

constant matrix. 

l > A A 2 2 Enters descriptor for A, the 2×2 

coefficient matrix, into the X-

register, moving the descriptor 

for B into the Y-register. 

÷ running Temporary display while A
-1

B is 

being calculated and stored in 

matrix C. 

 C 2 1 Descriptor for the result matrix, 

C, a 2×1 matrix. 

Now recall the elements of matrix C – the solution to the matrix equation. 

(Also remove the calculator from User mode and clear all matrices.) 

Keystrokes Display  

l C C     1,1 Denotes matrix C, row 1, column 

1. 

 -11.2887 Value of c11 (x1). 

l C 8.2496 Value of c21 (x2). 

´ U 8.2496 Deactivates User mode. 

´>0 8.2496 Clears all matrices. 

The solution to the system of equations is x1 = -11.2887 and x2 = 8.2496. 

Note: The description of matrix calculations in this section 

presumes that you are already familiar with matrix theory and 

matrix algebra. 

Matrix Dimensions 

Up to 64 matrix elements can be stored in memory. You can use all 

64 elements in one matrix or distribute them among up to five matrices.  
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Matrix inversion, for example, can be performed on an 8×8 matrix with real 

elements (or on a 4×4 matrix with complex elements, as described later
*
). 

To conserve memory, all matrices are initially dimensioned as 0×0. When a 

matrix is dimensioned or redimensioned, the proper number of registers is 

automatically allocated in memory. You may have to increase the number 

of registers allocated to matrix memory before dimensioning a matrix or 

before performing certain matrix operations. Appendix C describes how 

memory is organized, how to determine the number of registers currently 

available for storing matrix elements, and how to increase or decrease that 

number. 

Dimensioning a Matrix 

To dimension a matrix to have y rows and x columns, place those numbers 

in the Y- and X-registers, respectively, and then execute ´ m 

followed by the letter key specifying the matrix: 

1. Key the number of rows (y) into 

the display, then press v 

to lift it into the Y-register. 

  

Y   
number of 

rows 

2. Key the number of columns (x) 

into the X-register. 

X 
number of 

columns 
3. Press ´ m followed by a 

letter key, A through E, 

that specifies the name of the 

matrix.
†
   

                                                           
* The matrix functions described in this section operate on real matrices only. (In Complex mode, the 

imaginary stack is ignored during matrix operation.) However, the HP-15C has four matrix functions that 

enable you to calculate using real representations of complex matrices, as described on pages 160-173. 

† You don't need to press ´ before the letter key. (Refer to Abbreviated Key Sequences on page 78.) 
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Example: Dimension matrix A to be a 2×3 matrix. 

Keystrokes Display  

2 v 2.0000 Keys number of rows into  

Y-register. 

3 3 Keys number of columns into X-

register. 

´mA 3.0000 Dimensions matrix A to be 2×3. 

Displaying Matrix Dimensions 

There are two ways you can display the dimensions of a matrix: 

 Press l > followed by the letter key specifying the 

matrix. The calculator displays the name of the matrix at the left, 

and the number of rows followed by the number of columns at the 

right. 

 Press l m followed by the letter key specifying the 

matrix. The calculator places the number of rows in the Y-register 

and the number of columns in the X-register. 

Keystrokes Display  

l > B b     0  0 Matrix B has 0 rows and 0 

columns, since it has not been 

dimensioned otherwise. 

l m A 3.0000 Number of columns in A. 

® 2.0000 Number of rows in A. 

Changing Matrix Dimensions 

Values of matrix elements are stored in memory in order from left to right 

along each row, from the first row to the last. If you redimension a matrix to 

a smaller size, the required values are reassigned according to the new 

dimensions and the extra values are lost. For example, if the 2×3 matrix 

shown at the left below is redimensioned to 2×2, then 
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If you redimension a matrix to a larger size, elements with the value 0 are 

added at the end as required by the new dimensions. For example, if the 

same 2×3 matrix is re dimensioned, to 2×4, then 

 

When you have finished calculating with matrices, you'll probably want to 

redimension all five matrices to 0×0, so that the registers used for storing 

their elements will be available for program lines or for other advanced 

functions. You can redimension all five matrices to 0×0 at one time by 

pressing ´ > 0. (You can dimension a single matrix to 0×0 by 

pressing 0 ´ m {A through E}.) 

Storing and Recalling Matrix Elements 

The HP-15C provides two ways of storing and recalling values of matrix 

elements. The first method allows you to progress through all of the 

elements in order. The second method allows you to access elements 

individually. 

Storing and Recalling All Elements in Order 

The HP-15C normally uses storage registers R0 and 

R1 to indicate the row and column numbers of a 

matrix element. If the calculator is in User mode, 

the row and column numbers are automatically 

incremented as you store or recall each matrix 

element, from left to right along each row from the 

first row to the last. 

To set the row and column numbers in R0 and R1 to row 1, column 1, 

press ´ > 1. 
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To store or recall sequential elements of a matrix: 

1. Be sure the matrix is properly dimensioned. 

2. Press ´ >1. This stores 1 in both storage registers R0 and 

R1, so that elements will be accessed starting at row 1, column 1. 

3. Activate User mode by pressing ´ U. With the calculator in 

User mode, after each element is stored or recalled the row number 

in R0 or the column number in R1 is automatically incremented by 1, 

as shown in the example following. 

4. If you are storing elements, key in the value of the element to be 

stored in row 1, column 1. 

5. Press O or l followed by the letter key specifying the 

matrix. 

6. Repeat steps 4 and 5 for all elements of the matrix. The row and 

column numbers are incremented according to the dimensions of the 

matrix you specify. 

While the letter key specifying the matrix is held down after O or 

l is pressed, the calculator displays the name of the matrix followed by 

the row and column numbers of the element whose value is being stored or 

recalled. If the letter key is held down for longer than about 3 seconds, the 

calculator displays null, doesn't store or recall the element value, and 

doesn't increment the row and column numbers. (Also, the stack registers 

aren't changed.) 

After the last element of the matrix has been accessed, the row and column 

numbers both return to 1. 

Example: Store the values shown below in the elements of the matrix A 

dimensioned above. (Be sure matrix A is dimensioned to 2×3.) 




















654

321

232221

131211

aaa

aaa
A  
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Keystrokes Display  

´ > 1  Sets beginning row and column 

numbers in R0 and R1 to 1. 

(Display shows the previous 

result.) 

´ U  Activates User mode. 

1 O A A    1,1 Row 1, column 1 of A. 

(Displayed momentarily while 

A key held down.) 

 1.0000 Value of a11. 

2 O A 2.0000 Value of a12. 

3 O A 3.0000 Value of a13. 

4 O A 4.0000 Value of a21. 

5 O A 5.0000 Value of a22. 

6 O A 6.0000 Value of a23. 

lA A    1,1 Recalls element in row 1, 

column l. (R0 and R1 were reset 

in preceding step.) 

 1.0000 Value of a11. 

l A 2.0000 Value of a12. 

l A 3.0000 Value of a13. 

l A 4.0000 Value of a21. 

l A 5.0000 Value of a22. 

l A 6.0000 Value of a23. 

´ U 6.0000 Deactivates User mode. 

Checking and Changing Matrix Elements Individually 

The calculator provides two ways to check (recall) and change (store) the 

value of a particular matrix element. The first method uses storage registers 

R0 and R1 in the same way as described above – except that the row and 

column numbers aren't automatically changed when User mode is 

deactivated. The second method uses the stack to define the row and 

column numbers. 
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Using R0 and R1. To access a particular matrix element, store its row 

number in R0 and its column number in R1. These numbers won't change 

automatically (unless the calculator is in User mode). 

 To recall the element value (after storing the row and column 

numbers), press l followed by the letter key specifying the 

matrix. 

 To store a value in that element (after storing the row and column 

numbers), place the value in the X-register and press O 

followed by the letter key specifying the matrix. 

Example: Store the value 9 as the element in row 2, column 3 of matrix A 

from the previous example. 

Keystrokes Display  

2 O 0 2.0000 Stores row number in R0. 

3 O 1 3.0000 Stores column number in R1. 

9 9 Keys the new element value into 

the X-register. 

O A A    2,3 Row 2, column 3 of A. 

 9.0000 Value of a23. 

Using the Stack. You can use the stack registers to specify a particular matrix 

element. This eliminates the need to change the numbers in R0 and R1. 

 To recall an element value, enter the row number and column 

number into the stack (in that order). Then press l | 

followed by the letter key specifying the matrix. The element value 

is placed in the X-register. (The row and column numbers are lost 

from the stack.) 

 To store an element value, first enter the value into the stack 

followed by the row number and column number. Then press 

O | followed by the letter key specifying the matrix. (The 

row and column numbers are lost from the stack; the element value 

is returned to the X-register.) 

Note that these are the only operations in which the blue | key precedes 

a gold letter key. 
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Example: Recall the element in row 2, column 1 of matrix A from the 

previous example. Use the stack registers. 

Keystrokes Display  

2 v 1 1 Enters row number into Y-

register and column number into 

X-register. 

l | A 4.0000 Value of a21. 

Storing a Number in All Elements of a Matrix 

To store a number in all elements of a matrix, simply key that number into 

the display, then press O> followed by the letter key specifying 

the matrix. 

Matrix Operations 

In many ways, matrix operations are like numeric calculations. Numeric 

calculations require you to specify the numbers to be used; often you define 

a register for storing the result. Similarly, matrix calculations require you to 

specify one or two matrices that you want to use. A matrix descriptor is 

used to specify a particular matrix. For many calculations, you also must 

specify a matrix for storing the result. This is the result matrix. 

Because matrix operations usually require many individual calculations, the 

calculator flashes the running display during most matrix operations. 

Matrix Descriptors 

Earlier in this section you saw that when you press l > followed 

by a letter key specifying a matrix, the name of the matrix appears at the left 

of the display and the number of rows followed by the number of columns 

appears at the right. The matrix name is called the descriptor of the matrix. 

Matrix descriptors can be moved among the stack and data storage registers 

just like a number – that is, using O, l, v, etc. Whenever a 

matrix descriptor is displayed in the X-register, the current dimensions of 

that matrix are shown with it. 
You use matrix descriptors to indicate which matrices are used in each 

matrix operation. The matrix operations discussed in the rest of this section 
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operate on the matrices whose descriptors are placed in the X-register and 

(for some operations) the Y-register. 

Two matrix operations – calculating a determinant and solving the matrix 

equation AX = B – involve calculating an LU decomposition (also known 

as an LU factorization) of the matrix specified in the X-register.
*
 A matrix 

that is an LU decomposition is signified by two dashes following the matrix 

name in the display of its descriptor. (Refer to page 160 for using a matrix 

in LU form.) 

The Result Matrix 

For many operations discussed in this section, you need to define the matrix 

in which the result of the operation should be stored. This matrix is called 

the result matrix. 

Other matrix operations do not use or affect the result matrix. (This is noted 

in the descriptions of these operations.) Such an operation either replaces 

the original matrix with the result of the operation (if the result is a matrix, 

such as a transpose) or returns a number to the X-register (if the result is a 

number, such as a row norm). 

Before you perform an operation that uses the result matrix, you must 

designate the result matrix. Do this by pressing ´ < followed by 

the letter key specifying the matrix, (If the descriptor of the intended result 

matrix is already in the X-register, you can press O< instead.) 

The designated matrix remains the result matrix until another is designated.
†
 

To display the descriptor of the result matrix, press l <. 

When you perform an operation that affects the result matrix, the matrix is 

automatically redimensioned to the proper size. If this redimensioning 

would require more additional elements than there are available in matrix 

memory (a maximum of 64 for all five matrices), then the operation can't be 

performed. This restriction can often be overcome by designating the result 

matrix to be one of the matrices being operated on. (However, there are 

certain operations for which the result matrix can not be the same one as 

either of the matrices being operated on – this is noted in the description of 

these operations.) 

                                                           
* The LU decomposition of a matrix A is another matrix in which is encoded a lower-triangular matrix, L, 

and an upper-triangular matrix, U, whose product LU equals matrix A (possibly with same rows 

interchanged). The HP-15C Advanced Functions Handbook discusses LU decomposition in detail. 

† Matrix A is automatically designated as the result matrix whenever Continuous Memory is reset. 
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While the key used for any matrix operation that stores a result in the result 

matrix is held down, the descriptor of the result matrix is displayed. If the 

key is released within about 3 seconds, the operation is performed, and the 

descriptor of the result matrix is placed in the X-register. If the key is held 

down longer, the operation is not performed and the calculator displays 

null. 

Copying a Matrix 

To copy the elements of a matrix into the corresponding elements of 

another matrix, use the O > sequence: 

1. Press l > followed by the letter key specifying the 

matrix to be copied. This enters the descriptor of the matrix into 

the display. 

2. Press O> followed by the letter key specifying the 

matrix to be copied into. 

If the matrix specified after l does not have the same dimensions as the 

matrix specified after O, the second matrix is redimensioned to agree 

with the first. The matrix specified after O need not already be 

dimensioned. 

Example: Copy matrix A from the previous example into matrix B. 

Keystrokes Display 

l> 

A  

A 2 3 Displays descriptor of 

matrix to be copied. 

O> 

B  

A 2 3 Redimensions matrix B and 

copies A into B. 

l> 

B 

b 2 3 Displays descriptor of new 

matrix B. 

One-Matrix Operations 

The following table shows functions that operate on only the matrix 

specified in the X-register. Operations involving a single matrix plus a 

number in another stack register are described under Scalar Operations 

(page 151). 



150 Section 12: Calculating with Matrices 

 

One-Matrix Operations: 

Sign Change, Inverse, Transpose, Norms, Determinant 

Keystroke(s) 
Result in  

X-register 

Effect on Matrix 

Specified in  

X-register 

Effect on Result 

Matrix 

“ No change. Changes sign of 

all elements. 

None. ‡ 

∕ 

(´∕ in 

User Mode) 

Descriptor of 

result matrix. 

None. ‡ Inverse of 

specified matrix. 

§ 

´> 4 Descriptor of 

transpose. 

Replaced by 

transpose. 

None. ‡ 

´> 7 Row norm of 

specified 

matrix.* 

None. None. 

´> 8 Frobenius or 

Euclidean norm 

of specified 

matrix. † 

None. None. 

´> 9 Determinant of 

specified 

matrix. 

None.‡ LU decomposi-

tion of specified 

matrix.§ 

* The row norm is the largest sum of the absolute values of the elements in 

each row of the specified matrix. 

† 
The Frobenius of Euclidean norm is the square root of the sum of the 

squares of all elements in the specified matrix. 

‡ Unless the result matrix is the same matrix specified in the X-register. 

§ If the specified matrix is a singular matrix (that is, one that doesn’t have an 

inverse), then the HP-15C modifies the LU form by an amount that is 

usually small compared to round-off error. For ∕, the calculated inverse 

is the inverse of a matrix close to the original, singular matrix. (Refer to the  

HP-15C Advanced Functions Handbook for further information.) 
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Example: Calculate the transpose of matrix B. Matrix B was set in 

preceding examples to 

 

.
954

321








B  

Keystrokes Display 

l > B b 2 3 Displays descriptor of 

2×3 matrix B. 

´ > 4  b 3 2 Descriptor of 3×2 

transpose. 

Matrix B (which you can view using l B in User mode) is now 

.

93

52

41

















B  

Scalar Operations 

Scalar operations perform arithmetic operations between a scalar (that is, a 

number) and each element of a matrix. The scalar and the descriptor of the 

matrix must be placed in the X- and Y-registers – in either order. (Note that 

the register position will affect the outcome of the - and ÷ functions.) 

The resulting values are stored in the corresponding elements of the result 

matrix. 

The possible operations are shown in the following table.
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Operation 

Elements of Result Matrix* 

Matrix in Y-Register Scalar in Y-Register 

Scalar in X-Register Matrix in X-Register 

+ Adds scalar value to each matrix element. 

* Multiplies each matrix element by scalar value. 

- Subtracts scalar value 

from each matrix 

element. 

Subtracts each matrix 

element from scalar value. 

÷ Divides each matrix 

element by scalar value. 

Calculates inverse of matrix 

and multiplies each element 

by scalar value. 

* Result matrix may be the specified matrix. 

Example: Calculate the matrix B = 2A. then subtract 1 from every element 

in B. From before, use 

 











954

321
A . 

Keystrokes Display 

´<B    Designates matrix B as result 

matrix. 

l> A A 2 3 Displays descriptor of matrix A. 

2 * b 2 3 Redimensions matrix B to the 

same dimensions as A, multiplies 

the elements of A by 2, stores 

those values in the corresponding 

elements of B, and displays the 

descriptor of the result matrix. 
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Keystrokes Display 

1 - b 2 3 Subtracts 1 from the elements of 

matrix B and stores those values in the 

same elements of B. 

 

The result (which you can view using lB in User mode) is 














1797

531
B . 

Arithmetic Operations 

With matrix descriptors in both the X- and Y-registers, pressing + or 

- calculates the sum or difference of the matrices. 

Pressing Calculates* 

+ Y + X 

- Y - X 

* Result is stored in result matrix. 

Result matrix may be X or Y 

Example: Calculate C = B - A, where A and B are defined in the previous 

example. 

. and  
1797

531

954

321













 BA  

Keystrokes Display 

´< C    Designates C as result matrix. 

l> B b 2 3 Recalls descriptor of matrix B. 

(This step can be skipped if 

descriptor is already in X-register.) 

l> A A 2 3 Recalls descriptor of matrix A into 

X-register, moving descriptor of 

matrix B to Y-register. 
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Keystrokes 

 

Display 

   

- C 2 3 Calculates B - A and stores 

values in redimensioned result 

matrix C. 

The result is 









843

210
C  

Matrix Multiplication 

With matrix description in both the X- and Y-registers, you can calculate 

three different matrix products. The table below shows the results of the 

three functions for a matrix X specified in the X-register and a matrix Y 

specified in the Y-register. The matrix X
-1

 is the inverse of X, and the 

matrix Y
T
 is the transpose of Y. 

 

Pressing Calculates* 

* YX 

´ > 5 Y
T
X 

÷ X
-1

Y 

* Result is stored in result matrix. For ÷, the 

result matrix can be Y but not X. For the others, 

the result matrix must be other than X or Y. 

Note: When you use the ÷ function to evaluate the expression 

A
-1

B, you must enter the matrix descriptors in the order B, A rather 

than in the order that they appear in the expression.
*
 

The value stored in each element of the result matrix is determined 

according to the usual rules of matrix multiplication. 

For > 5, the matrix specified in the Y-register isn't changed by this 

operation, even though its transpose is used. The result is identical to that 

obtained using > 4 (transpose) and *. 

                                                           
* This is the same order you would use if you were entering b and a for evaluating a-1b = b/a 
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For ÷, the matrix specified in the X-register is replaced by its LU 

decomposition. The ÷ function calculates X
–1

Y using a more direct 

method than does ∕ and *, giving the result faster and with improved 

accuracy. 

Example: Using matrices A and B from the previous example, calculate 

C = A
T 

B. 



















1797

531

954

321
  and  BA  

Keystrokes Display 

l>
A 

A 2 3 Recalls descriptor for matrix A. 

l>
B 

b 2 3 Recalls descriptor for matrix B 

into X-register, moving matrix 

A descriptor into Y-register. 

´< 

C 

b 2 3 Designates matrix C as result 

matrix. 

´> 5 C 3 3 Calculates A
T 

B and stores 

result in matrix C, which is 

redimensioned to 3×3. 

The result, matrix C, is 



















1689066

955137

733929

C . 
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Solving the Equation AX = B 

The ÷ function is useful for solving 

matrix equations of the form AX = B, 

where A is the coefficient matrix, B is 

the constant matrix, and X is the 

solution matrix. The descriptor of the 

constant matrix B should be entered in 

the Y-register and the descriptor of the 

coefficient matrix A should be entered 

in the X-register Pressing ÷ then 

calculates the solution X=A
-1

B.
*
 

Remember that the ÷ function replaces the coefficient matrix by its LU 

decomposition and that this matrix must not be specified as the result 

matrix. Furthermore, using ÷ rather than ∕ and * gives a solution 

faster and with improved accuracy. 

At the beginning of this section, you found the solution for a system of 

linear equations in which the constant matrix and the solution matrix each 

had one column. The following example illustrates that you can use the HP-

15C to find solutions for more than one set of constants—that is, for a 

constant matrix and solution matrix with more than one column. 

 

Example: Looking at his receipts for his 

last three deliveries of cabbage and 

broccoli, Silas Farmer sees the following 

summary. 

                                                           
* If A is a singular matrix (that is, one that doesn’t have an inverse), then the HP-15C modifies the LU form 

of A by an amount that is usually small compared to round-off error. The calculated solution corresponds 

to that for a nonsingular coefficient matrix close to the original, singular matrix. 

Y constant matrix 

X 
coefficient 

matrix 
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 Week 

1 2 3 

Total Weight (kg) 274 233 331 

Total Value $120.32 $112.96 $151.36 

Silas knows that he received $0.24 per kilogram for his cabbage and $0.86 

per kilogram for his broccoli. Use matrix operations to determine the 

weights of cabbage and broccoli he delivered each week. 

Solution: Each week's delivery represents two linear equations (one for 

weight and one for value) with two unknown variables (the weights of 

cabbage and broccoli). All three weeks can be handled simultaneously using 

the matrix equation 










0.860.24

11
 









232221

1312

ddd

ddd11  = 








151.36112.96120.32

331233274
 

or     AD = B 

where the first row of matrix D is the weights of cabbage for the three 

weeks and the second row is the weights of broccoli. 

Keystrokes Display  

2 

v´mA 

2.0000 Dimensions A as 2×2 matrix. 

´> 1 2.0000 Sets row and column numbers in R0 

and R1 to 1. 

´U 2.0000 Activates User mode. 

1 OA 1.0000 Stores a11. 

OA 1.0000 Stores a12. 

.24 OA 0.2400 Stores a21. 

.86 OA 0.8600 Stores a22. 

2 v 3 

´mB 

3.0000 Dimensions B as 2×3 matrix. 
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Keystrokes Display  

274 OB 274.0000 Stores b11.
*
 

233 OB 233.0000 Stores b12. 

331 OB 331.0000 Stores b13. 

120.32 OB 120.3200 Stores b21. 

112.96 OB 112.9600 Stores b22. 

151.36 OB 151.3600 Stores b23. 

´< Á 151.3600 Designates matrix D as result 

matrix. 

l> B b 2 3 Recalls descriptor of constant 

matrix. 

l> A A 2 2 Recalls descriptor of coefficient 

matrix A into X-register, moving 

descriptor of constant matrix B 

into Y-register. 

÷ d 2 3 Calculates A
-1

B and stores result 

in matrix D. 

lÁ 186.0000 Recalls d11, the weight of cabbage 

for the first week. 

lÁ 141.0000 Recalls d12 the weight of cabbage 

for the second week. 

lÁ 215.0000 Recalls d13. 

lÁ 88.0000 Recalls d21. 

lÁ 92.0000 Recalls d22. 

lÁ 116.0000 Recalls d23. 

´U 116.0000 Deactivates User mode. 

                                                           
* Note that you did not need to press ´> 1 before beginning to store the elements of matrix B. This 

is because after you stored the last element of matrix A, the row and column numbers in R0 and R1 were 

automatically reset to 1. 
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Silas' deliveries were: 

 Week 

 1 2 3 

Cabbage (kg) 186 141 215 

Broccoli (kg) 88 92 116 

Calculating the Residual 

The HP-15C enables you to calculate the residual, that is, the matrix 

Residual = R–YX 

where R is the result matrix and X and Y are the matrices specified in the 

X- and Y-registers. 

This capability is useful, for example, in doing iterative refinement on the 

solution of a system of equations and for linear regression problems. For 

example, if C is a possible solution for AX = B, then B – AC indicates how 

well this solution satisfies the equation. (Refer to the HP-15C Advanced 

Functions Handbook for information about iterative refinement and linear 

regression.) 

The residual function (> 6) uses the current contents of the result 

matrix and the matrices specified in the X- and Y-registers to calculate the 

residual defined above. The residual is stored in the result matrix, replacing 

the original result matrix. A matrix specified in the X- or Y-register can not 

be the result matrix. 

Using > 6 rather than * and - gives a result with improved 

accuracy, particularly if the residual is small compared to the matrices being 

subtracted. 

To calculate the residual: 

1. Enter the descriptor of the Y matrix into the Y-register. 

2. Enter the descriptor of the X matrix into the X-register. 

3. Designate the R matrix as the result matrix. 

4. Press ´> 6. The residual replaces the original result 

matrix (R). The descriptor of the result matrix is placed in the X-

register. 
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Using Matrices in LU Form 

As noted earlier, two matrix operations (calculating a determinant and 

solving the matrix equation (AX = B) create an LU decomposition of the 

matrix specified in the X-register. The descriptor of such a matrix has two 

dashes following the matrix name. A matrix in LU form has elements that 

differ from the elements of the original matrix. 

However, the descriptor for a matrix in LU form can be used in place of the 

descriptor for the original matrix for operations involving the inverse of the 

matrix and for the determinant operation. That is, either the original matrix 

or its LU decomposition can be used for these operations: 

∕  

÷ for the matrix in the X-register 

> 9 

For these three functions, using the LU form of the matrix to be inverted 

gives a result that is identical to that using the original matrix. 

As an example, if you solved the matrix equation AX = B, matrix A would 

be changed to its LU form. If you wanted to change the B matrix and solve 

the equation again, you could do so without changing the A matrix – the LU 

matrix will give the correct solution. 

For all other matrix operations, a matrix that is an LU decomposition is not 

recognized as representing its original matrix. Instead, the elements of the 

LU matrix are used just as they appear in matrix memory and the result is 

not the result you would obtain using the original matrix. 

Calculations With Complex Matrices 

The HP-15C enables you to perform matrix multiplication and matrix 

inversion with complex matrices (that is, matrices whose elements are 

complex numbers) and to solve systems of complex equations (that is, 

equations whose coefficients and variables are complex). 

However, the HP-15C stores and operates on only real matrices. The 

capability of doing calculations with complex matrices is completely 

independent of the capability of doing calculations with complex numbers 

described in the preceding section. You don’t need to activate Complex 

mode for calculations with complex matrices. 
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Instead, calculations with complex matrices are performed by using real 

matrices derived from the original complex matrices – in a manner to be 

described below – and performing certain transformations in addition to the 

regular matrix operations. These transformations are performed by four 

calculator functions. This section will describe how to do these calculations. 

(There are more examples of calculations with complex matrices in the  

HP-15C Advanced Functions Handbook.) 

Storing the Elements of a Complex Matrix 

Consider an m×n complex matrix Z = X + iY, where X and Y are real  

m×n matrices. This matrix can be represented in the calculator as a  

2m×n ―partitioned‖ matrix: 

PartImaginary 

Part Real

}

}

Y

X








P

Z  

The superscript P signifies that the complex matrix is represented by a 

partitioned matrix. 

All of the elements of Z
P
 are real numbers – those in the upper half 

represent the elements of the real part (matrix X), those in the lower half 

represent the elements of the imaginary part (matrix Y). The elements of Z
P
 

are stored in one of the five matrices (A, for example) in the usual manner, 

as described earlier in this section. 

For example, if Z = X + iY, where 

,     and  
2221

1211

2221

1211



















yy

yy

xx

xx
YX  

then Z can be represented in the calculator by 































2221

1211

2221

1211

yy

yy

xx

xx

P

Y

X
ZA . 
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Suppose you need to do a calculation with a complex matrix that is not 

written as the sum of a real matrix and an imaginary matrix – as was the 

matrix Z in the example above – but rather written with an entire complex 

number in each element, such as 















22222121

12121111

iyxiyx

iyxiyx
Z . 

This matrix can be represented in the calculator by a real matrix that looks 

very similar – one that is derived simply by ignoring the i and the + sign. 

The 2 × 2 matrix Z shown above, for example, can be represented in the 

calculator in ―complex‖ form by the 2 × 4 matrix. 











22222121

12121111

yxyx

yxyx
C

ZA . 

The superscript C signifies that the complex matrix is represented in a 

"complex-like" form. 

Although a complex matrix can be initially represented in the calculator by 

a matrix of the form shown for Z
C
, the transformations used for multiplying 

and inverting a complex matrix presume that the matrix is represented by a 

matrix of the form shown for Z
P
. The HP-15C provides two transformations 

that convert the representation of a complex matrix between Z
C
 and Z

P
: 

Pressing Transforms Into 

´p Z
C
 Z

P
 

| c Z
P
 Z

C
 

To do either of these transformations, recall the descriptor of Z
C
 or Z

P
 into 

the display, then press the keys shown above. The transformation is done to 

the specified matrix; the result matrix is not affected. 
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Example: Store the complex matrix 















ii

ii

8351

2734
Z  

in the form Z
C
, since it is written in a form that shows Z

C
. Then transform 

Z
C
 into the form Z

P
. 

You can do this by storing the elements of Z
C 

in matrix A and then using 

the p function, where 

 

 

Keystrokes Display  

´> 0  Clears all matrices. 

2 v 4 
´mA 

 4.0000 Dimensions matrix A to be 

2×4. 

´> 1  4.0000 Sets beginning row and 

column numbers in R0 and 

R1 to 1. 

´U  4.0000 Activates User mode. 

4 OA  4.0000 Stores a11. 

3 OA  3.0000 Stores a12. 

7 OA  7.0000 Stores a13. 

2 “ OA -2.0000 Stores a14. 

1 OA  1.0000 Stores a21. 

5 OA  5.0000 Stores a22. 

3 OA  3.0000 Stores a23. 

8 OA  8.0000 Stores a24. 

´U  8 0000 Deactivates User mode. 

l> A  A 2 4 Display descriptor of 

matrix A. 

´ p  A 4 2 Transforms Z
C 

into Z
P
 and 

redimensions matrix A. 

 

.
8351

2734







 


c
ZA
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Matrix A now represents the complex matrix Z in Z
P
 form: 

PartImaginary 

Part Real

.

85

23

31

74

}
}






















 P

ZA  

The Complex Transformations Between ZP and Z  

An additional transformation must be done when you want to calculate the 

product of two complex matrices, and still another when you want to 

calculate the inverse of a complex matrix. These transformations convert 

between the Z
P 

representation of an m×n complex matrix and a 2m×2n 

partitioned matrix of the following form: 








 


XY

YX
Z . 

The matrix    created by the > 2 transformation has twice as many 

elements as Z
P
. 

For example, the matrices below show how    is related to Z
P
. 




























6154

5461~

54

61
ZZ

P
 

The transformations that convert the representation of a complex matrix 

between Z
P
 and    are shown in the following table. 

Pressing Transforms Into 

´ > 2 Z
P
    

´ > 3    Z
P
 

To do either of these transformations, recall the descriptor of Z
P 

or    into 

the display, then press the keys shown above. The transformation is done to 

the specified matrix; the result matrix is not affected. 
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Inverting a Complex Matrix 

You can calculate the inverse of a complex matrix by using the fact that  

(  )
-1

 = (  
-1

). 

 To calculate inverse, Z
-1

, of a complex matrix Z: 

1. Store the elements of Z in memory, in the form either of Z
P
 or of Z

C  

2. Recall the descriptor of the matrix representing Z into the display. 

3. If the elements of Z were entered in the form Z
C
, press ´p to 

transform Z
C
 into Z

P
 

4. Press ´ > 2 to transform Z
P
 into   . 

5. Designate a matrix as the result matrix. It may be the same as the 

matrix in which    is stored. 

6. Press ∕. This calculates (  )
-1

, which is equal to (  
-1

). The values 

of these matrix elements are stored in the result matrix, and the 

descriptor of the result matrix is placed in the X-register. 

7. Press ´ > 3 to transform (  
-1

) into (Z
-1

)
P
. 

8. If you want the inverse in the form (Z
-1

)
C
, press | c 

You can derive the complex elements of Z
-1

 by recalling the elements of Z
P
 

or Z
C
 and then combining them as described earlier. 

Example: Calculate the inverse of the complex matrix Z from the previous 

example. 
























85

23

31

74

P
ZA . 

Keystrokes Display 

l>A A 4 2 Recalls descriptor of matrix A. 

´ > 2 A 4 4 Transforms Z
P
 into    and 

redimensions matrix A. 
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Keystrokes Display 

´ < 

B 

A 4 4 Designates B as the result 

matrix. 

∕ b 4 4 Calculates (  )
-1

 = (  
-1

) and 

places the result in matrix B. 

´> 3 b 4 2 Transforms (  
-1

) into  

(  
-1

)
P
. 

The representation of Z
-1

 in partitioned form is contained in matrix B. 

PartImaginary 

Part Real

1315.01691.0

0022.02829.0

1017.00122.0

2420.00254.0

}
}





























B  

Multiplying Complex Matrices 

The product of two complex matrices can be calculated by using the fact 

that (YX)
P
 =   

P
. 

To calculate YX, where Y and X are complex matrices: 

1. Store the elements of Y and X in memory, in the form either of 

Z
P
 or Z

C
. 

2. Recall the descriptor of the matrix representing Y into the 

display. 

3. If the elements of Y were entered in the form of Y
C
, press 

´p to transform Y
C 

into Y
P
. 

4. Press ´> 2 to transform Y
P
 into  . 

5. Recall the descriptor of the matrix representing X into the 

display. 

6. If the elements of X were entered in the form X
C
, press 

´p to transform X
C
 into X

P
. 

7. Designate the result matrix; it must not be the same matrix as 

either of the other two. 
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8. Press * to calculate  X
P
 = (YX)

P
. The values of these matrix 

elements are placed in the result matrix, and the descriptor of 

the result matrix is placed in the X-register. 

9. If you want the product in the form (YX)
C
, press |c 

Note that you don't transform X
P 

into   . 

You can derive the complex elements of the matrix product YX by recalling 

the elements of (XY)
P
 or (YX)

C 
and combining them according to the 

conventions described earlier. 

Example: Calculate the product ZZ
-1

, where Z is the complex matrix given 

in the preceding example. 

Since elements representing both matrices are already stored (   in A and 

(Z
-1

)
P
 in B), skip steps 1, 3, 4, and 6. 

Keystrokes Display 

l>A A 4 4 Displays descriptor of matrix A. 

l>B b 4 2 Displays descriptor of matrix 

B. 

´<C b 4 2 Designates C as result matrix. 

* C 4 2 Calculates    (Z
-1

)
P
 = (ZZ

-1
)

P
. 

´U C 4 2 Activates User mode. 

lC C   1,1 Matrix C, row 1, column 1. 

(Displayed momentarily while 

last key held down.) 

 1.0000 Value of c11. 

lC –2.8500 –10 Value of c12. 

lC –4.0000 –11 Value of c21. 

lC  1.0000 Value of c22. 

lC  1.0000 –11 Value of c31. 

lC  3.8000 –10 Value of c32. 

lC  1.0000 –11 Value of c41. 

lC –1.0500 –10 Value of c42. 

´U –1.0500 –10 Deactivates User mode. 
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Writing down the elements of C, 

 P1

1011

1011

11

10

100500.1100000.1

108000.3100000.1

0000.1100000.4

108500.20000.1









































 ZZC , 

where the upper half of matrix C is the real part of ZZ
-1

 and the lower half 

is the imaginary part. Therefore, by inspection of matrix C, 












































1011

1111

11

10
1

100500.1100000.1

108000.3100000.1

0000.1100000.4

108500.20000.1

i

ZZ

 

As expected, 




















00

00

10

011  i-
ZZ  

Solving the Complex Equation AX = B 

You can solve the complex matrix equation AX = B by finding X = A
-1

B. 

Do this by calculating X
P
 = (Ã)

-1
 B

P
. 

To solve the equation AX = B, where A, X, and B are complex matrices: 

1. Store the elements of A and B in memory, in the form either of Z
P 

or 

of Z
C
. 

2. Recall the descriptor of the matrix representing B into the display. 

3. If the elements of B were entered in the form B
C
, press ´p to 

transform B
C
 into B

P
. 
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4. Recall the descriptor of the matrix representing A into the display. 

5. If the elements of A were entered in the form of A
C
, press ´ 

p to transform A
C 

into A
P
. 

6. Press ´> 2 to transform A
P 

into Ã. 

7. Designate the result matrix; it must not be the same as the matrix 

representing A. 

8. Press ÷; this calculates X
P
. The values of these matrix elements 

are placed in the result matrix, and the descriptor of the result matrix 

is placed in the X-register. 

9. If you want the solution in the form X
C
, press |c. 

Note that you don't transform B
P
 into   . 

You can derive the complex elements of the solution X by recalling the 

elements of X
P
 or X

C
 and combining them according to the conventions 

described earlier. 

Example: Engineering student A. C. Dimmer wants to analyze the 

electrical circuit shown below. The impedances of the components are 

indicated in complex form. Determine the complex representation of the 

currents I1 and I2. 

 

This system can be represented by the complex matrix equation 
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or AX = B. 
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In partitioned form, 














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




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0

0

5

 and 

170200

200200

00

010

BA , 

where the zero elements correspond to real and imaginary parts with zero 

value. 

Keystrokes Display 

4 v2´mA  2.0000 Dimensions matrix A to be 

4×2. 

´> 1  2.0000 Set beginning row and column 

numbers in R0 and R1 to 1. 

´U  2.0000 Activates User mode. 

10 OA  10.0000 Stores a11. 

0 O A  0.0000 Stores a12. 

OA  0.0000 Stores a21. 

OA  0.0000 Stores a22. 

200 OA  200.0000 Stores a31. 

“OA –200.0000 Stores a32. 

OA –200.0000 Stores a41. 

170 OA  170.0000 Stores a42. 

4 v 1´m 

B 

 1.0000 Dimensions matrix B to be 

4×1. 

0 O>B  0.0000 Stores value 0 in all elements 

of B. 

5 v 1 v  1.0000 Specifies value 5 for row 1, 

column 1. 

O|B  5.0000 Stores value 5 in b11. 

l> B  b 4 1 Recalls descriptor for matrix 

B. 

l> A  A 4 2 Places descriptor for matrix A 

into X-register, moving 

descriptor for matrix B into Y-

register. 
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Keystrokes Display 

´> 2 A 4 4 Transforms A
P
 into Ã. 

´< C A 4 4 Designates matrix C as 

result matrix. 

÷ C 4 1 

Calculates X
P
 and stores 

in C. 

|c C 2 2 Transforms X
P 

into X
C
. 

lC 0.0372   Recalls c11. 

lC 0.1311   Recalls c12. 

lC 0.0437   Recalls c21. 

lC 0.1543   Recalls c22. 

´U 0.1543   Deactivates User mode. 

´> 0 0.1543   Redimensions all matrices 

to 0×0. 

The currents, represented by the complex matrix X, can be derived from C 
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
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
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i

I

I

2

1

0.15430.0437

0.13110.0372
X  

Solving the matrix equation in the preceding example required 24 registers 

of matrix memory – 16 for the 4×4 matrix A (which was originally entered 

as a 4×2 matrix representing a 2×2 complex matrix), and four each for the 

matrices B and C (each representing a 2×1 complex matrix). (However, you 

would have used four fewer registers if the result matrix were matrix B.) 

Note that since X and B are not restricted to be vectors (that is, single-

column matrices), X and B could have required more memory. 

The HP-15C contains sufficient memory to solve, using the method 

described above, the complex matrix equation AX = B with X and B having 

up to six columns if A is 2×2, or up to two columns if A is 3×3.
*
 (The 

allowable number of columns doubles if the constant matrix B is used as the 

result matrix.) If X and B have more columns, or if A is 4×4, you can solve 

the equation using the alternate method below. This method differs from the 

preceding one in that it involves separate inversion and multiplication 

operations and fewer registers. 

                                                           
* If all available memory space is dimensioned to the common pool (W: 1 64 0-0). Refer to appendix C, 

Memory Allocation. 
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1. Store the elements of A in memory, in the form either of A
P
 or of 

A
C
. 

2. Recall the descriptor of the matrix representing A into the display. 

3. If the elements of A were entered in the form A
C
, press ´ p 

to transform A
C
 into A

P
. 

4. Press ´> 2 to transform A
P
 into Ã. 

5. Press O< to designate the matrix representing A as the 

result matrix. 

6. Press ∕ to calculate (Ã)
-1

. 

7. Redimension A to have half the number of rows as indicated in the 

display of its descriptor after the preceding step. 

8. Store the elements of B in memory, in the form either of B
P
 or 

of B
C
. 

9. Recall the descriptor of the matrix representing A into the display. 

10. Recall the descriptor of the matrix representing B into the display. 

11. If the elements of B were entered in the form B
C
, press ´p to 

transform B
C
 into B

P
. 

12. Press ´> 2 to transform B
P
 into    

13. Designate the result matrix; it must not be the same matrix as either 

of the other two. 

14. Press *. 

15. Press ´> 4 to transpose the result matrix. 

16. Press ´> 2. 

17. Redimension the result matrix to have half the number of rows as 

indicated in the display of its descriptor after the preceding step. 

18. Press l< to recall the descriptor of the result matrix. 

19. Press ´> 4 to calculate X
P
. 

20. If you want the solution in the form X
C
, press |c 

 



 Section 12: Calculating with Matrices 173 

 

A problem using this procedure is given in the HP-15C Advanced Functions 

Handbook under Solving a Large System of Complex Equations. 

Miscellaneous Operations Involving Matrices 

Using a Matrix Element With Register Operations 

If a letter key specifying a matrix is pressed after any of the following 

function keys, the operation is performed using the matrix element specified 

by the row and column numbers in R0 and R1, just as though it were a data 

storage register. 

O
*
 l

*
 

O{+, -, *, ÷} l{+, -, *, 
÷} 

e I 

X  

Using Matrix Descriptors in the Index Register  

In certain applications, you may want to perform a programmed sequence 

of matrix operations using any of the matrices A through E. In this 

situation, the matrix operations can refer to whatever matrix descriptor is 

stored in the index register (RI). 

If the Index register contains a matrix descriptor: 

 Pressing % after any of the functions listed above performs the 

operations using the element specified by R0 and R1 and the matrix 

specified in RI. 

 Pressing % after O| or l| performs the operation 

using the element specified by the row and column numbers in the  

Y- and X-registers and the matrix specified in RI. 

                                                           
*  Also, in User mode the row and column numbers in R0 and R1 are incremented according to the 

dimensions of the specified matrix. 
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 Pressing ´mV dimensions the matrix specified in RI 

according to the dimensions in the X- and Y-registers. 

 Pressing lmV recalls to the X- and Y-registers the 

dimensions of the matrix specified in RI. 

 Pressing GV or tV has the same result as pressing 

G or t followed by the letter of the matrix specified in RI. 

(This is not actually a matrix operation – only the letter in the 

matrix descriptor is used.) 

Conditional Tests on Matrix Descriptors 

Four conditional tests – ~, T 0 (x≠ 0), T 5 (x = y), and T 

6 (x≠y) – can be performed with matrix descriptors in the X- and Y-

registers, Conditional tests can be used to control program execution, as 

described in section 8. 

If a matrix descriptor is in the X-register, the result of ~ will be false 

and the result of T 0 will be true (regardless of the element values in 

the matrix.) 

If matrix descriptors are in the X- and Y-registers when T 5 or T 6 

conditional test is performed, x and y are equal if the same descriptor is in 

the X- and Y-registers, and not equal otherwise. The comparison is made 

between the descriptors themselves, not between the elements of the 

specified matrices. 

Other conditional tests can't be used with matrix descriptors. 

Stack Operation for Matrix Calculations 

During matrix calculations, the contents of the stack registers shift much 

like they do during numeric calculations. 

For some matrix calculations, the result is stored in the result matrix. The 

arguments – one or two descriptors or numbers in the X-register or the X- 

and Y-registers – are combined by the operation, and the descriptor of the 

result matrix is placed in the X-register. (The argument from the X-register 

is placed in the LAST X register.) 
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Several matrix functions operate on the matrix specified in the X-register 

only and store the result in the same matrix. For these operations the 

contents of the stack (including the LAST X register) are not moved – 

although the display changes to show the new dimensions if necessary. 

For the > 7, > 8, and > 9 functions, the matrix 

descriptor specified in the X-register is placed in the LAST X register and 

the norm or (for > 9) the determinant is placed in the X-register. The 

Y-, Z-, and T-registers aren't changed. 

When you recall descriptors or matrix elements into the X-register (with the 

stack enabled), other descriptors and numbers already in the stack move up 

in the stack – and the contents of the T-register are lost. (The LAST X 

register is not changed.) When you store descriptors or matrix elements, the 

stack (and the LAST X register) isn't changed. 

In contrast to the operation described above, the O| and l| 

functions do not affect the LAST X register and operate as shown on the 

next page. 



176 Section 12: Calculating with Matrices 

 

 

Using Matrix Operations in a Program 

If the calculator is in User mode during program entry when you enter a 

O or l{A through E, %} instruction to store or recall a 

matrix element, a u replaces the dash usually displayed after the line 

number. When this line is executed in a running program, it operates as 

though the calculator were in User mode. That is, the row and column 

numbers in R0 and R1 are automatically incremented according to the 

dimensions of the specified matrix. This allows you to access elements 

sequentially. (The USER annunciator has no effect during program 

execution.) 

In addition, when the last element is accessed by the ―User‖ O or l 
instruction – when R0 and R1 are returned to 1 – program execution skips 

the next line. This is useful for programming a loop that stores or recalls 

each matrix element, then continues executing the program. For example, 

the following sequence squares all elements of matrix D: 
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The > 7 (row norm) and > 8 (Frobenius norm) functions also 

operate as conditional branching instructions in a program. If the X-register 

contains a matrix descriptor, these functions calculate the norm in the usual 

manner, and program execution continues with the next program line. If the 

X-register contains a number, program execution skips the next line. In both 

cases, the original contents of the X-register are stored in the LAST X 

register. This is useful for testing whether a matrix descriptor is in the X-

register during a program. 

Summary of Matrix Functions  

Keystroke(s) Results 

|c Transforms Z
P
 into Z

C
. 

“ Changes sign of all elements in matrix specified in 

X-register. 

´m {A 

through E, V} 

Dimensions specified matrix. 

´> 0 Dimensions all matrices to 0×0. 

´> 1 Sets row and column numbers in R0 and R1 to 1. 

´> 2 Transform Z
P 

into   . 

´> 3 Transforms    into Z
P
. 

´> 4 Calculate transpose of matrix specified in X-register. 

´> 5 Multiplies transpose of matrix specified in Y-

register with matrix specified in X-register. Stores in 
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Keystroke(s) Results 

result matrix. 

´> 6 Calculates residual in result matrix. 

´> 7 Calculates row norm of matrix specified in X-

register. 

´> 8 Calculates Frobenius or Euclidean norm of matrix 

specified in X-register. 

´> 9 Calculates determinant of matrix specified in X-

register, Place LU in result matrix. 

´p Transforms Z
C 

into Z
P
. 

l{A through 

E, %} 
Recalls value from specified matrix, using row and 

column numbers in R0 and R1. 

l|{A 
through E, %} 

Recalls value from specified matrix using row and 

column numbers in Y- and X-registers. 

lm {A 
through E, %} 

Recalls dimensions of specified matrix into X- and 

Y-registers. 

l> {A 
through E} 

Displays descriptor of specified matrix. 

l< Displays descriptor of result matrix. 

´<{A 
through E} 

Designates specified matrix as result matrix. 

O{A through 

E %} 

Stores value from display into element of specified 

matrix, using row and column numbers in R0 and R1. 

O|{A 
through E %} 

Stores value from Z-register into element of 

specified matrix, using row and column numbers in 

Y- and X-registers. 

O> {A 
through E} 

If matrix descriptor is in display, copies all elements 

of that matrix into corresponding elements of 

specified matrix. If number is in display, stores that 

value in all elements of specified matrix. 
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Keystroke(s) Results 

O < Designates matrix specified in X-register as result 

matrix. 

´ U Row and column numbers in R0 and R1 are 

automatically incremented each time O or l 

{A through E, %} is pressed. 

∕ Inverts matrix specified in X-register. Stores in result 

matrix. Use ´ ∕ if User mode is on. 

+, - If matrix descriptors specified in both X- and Y-

registers, adds or subtracts corresponding elements of 

matrices specified. If matrix descriptor specified in only 

one of these registers, performs addition or subtraction 

with all elements in specified matrix and scalar in other 

register. Stores in result matrix. 

* If matrix descriptors specified in both X- and Y-

registers, calculates product of specified matrices (as 

YX). If matrix specified in only one of these registers, 

multiplies all elements in specified matrix by scalar in 

other register. Stores in result matrix. 

÷ If matrix descriptors specified in both X- and Y-

registers, multiplies inverse of matrix specified in X-

register with matrix specified in Y-register. If matrix 

specified in only Y-register, divides all elements of 

specified matrix by scalar in other register. If matrix 

specified in only X-register, multiplies each element of 

inverse of specified matrix by scalar in other register. 

Stores in result matrix. 

For Further Information 

The HP-15C Advanced Functions Handbook presents more detailed and 

technical aspects of the matrix functions in the HP-15C, including 

applications. The topics include: least-squares calculations, solving 

nonlinear equations, ill-conditioned and singular matrices, accuracy 

considerations, iterative refinement, and creating the identity matrix. 
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Section 13 

Finding the Roots  

of an Equation 

In many applications you need to solve equations of the form 

f(x)=0.
*
 

This means finding the values of x that 

satisfy the equation. Each such value 

of x is called a root of the equation f(x) 

= 0 and a zero of the function f(x). 

These roots (or zeros) that are real 

numbers are called real roots (or real 

zeros). For many problems the roots of 

an equation can be determined 

analytically through algebraic 

manipulation; in many other instances, 

this is not possible. Numerical 

techniques can be used to estimate the 

roots when analytical methods are not suitable. When you use the _ 

key on your HP-15C, you utilize an advanced numerical technique that lets 

you effectively and conveniently find real roots for a wide range of 

equations.
†
 

Using _ 

In calculating roots, the _ operation repeatedly calls up and executes 

a subroutine that you write for evaluating f(x). 

                                                           
* Actually, any equation with one variable can be expressed in this form. For example, f(x) = a is equivalent 

to f(x) – a = 0, and f(x) = g(x) is equivalent to f(x) – g(x) = 0. 

† The _ function does not use the imaginary stack. Refer to the HP-15C Advanced Functions 

Handbook for information about complex roots. 
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The basic rules for using _ are: 

1. In Program mode, key in a subroutine that evaluates the function 

f(x) that is to be equated to zero. This subroutine must begin with a 

label instruction (´b label) and end up with a result for f(x) in 

the X-register. 

 In Run mode: 

2. Key two initial estimates of the desired root, separated by v, 

into the X- and Y-registers. These estimates merely indicate to the 

calculator the approximate range of x in which it should initially 

seek a root of f(x) = 0. 

3. Press ´ _ followed by the label of your subroutine. The 

calculator then searches for the desired zero of your function and 

displays the result. If the function that you are analyzing equals zero 

at more than one value of x, the routine will stop when it finds any 

one of those values. To find additional values, you can key in 

different initial estimates and use _ again. 

Immediately before _ addresses your subroutine it places a value of x 

in the X-, Y-, Z-, and T-registers. This value is then used by your subroutine 

to calculate f(x). Because the entire stack is filled with the x-value, this 

number is continually available to your subroutine. (The use of this 

technique is described on page 41). 

Example: Use _ to find the values of x for which 

f(x) = x
2
 –3x – 10 = 0. 

Using Horner's method (refer to page 79), you can rewrite f(x) so that it is 

programmed more efficiently: 

f(x) = (x – 3)x – 10. 

In Program mode, key in the following subroutine to evaluate f(x). 

Keystrokes Display  

|¥ 000- Program mode. 

´ CLEAR M 000- Clear program memory. 
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Keystrokes Display  

´ b 0 001–42,21, 0 Begin with b instruction. 

Subroutine assumes stack 

loaded with x. 

3 002–       3  

- 003–      30 Calculate x – 3. 

* 004–      20 Calculate (x – 3)x. 

1 005–       1  

0 006–       0  

- 007–      30 Calculate (x – 3)x – 10. 

| n 008–   43 32  

In Run mode, key two initial estimates into the X- and Y-registers. 

Try estimates of 0 and 10 to look for a positive root. 

Keystrokes Display
*
  

| ¥  Run mode. 

0 v 0.0000 
Initial estimates. 

10 10 

You can now find the desired root by pressing ´_ 0. When you do 

this, the calculator will not display the answer right away. The HP-15C uses 

an iterative algorithm
†
 to estimate the root. The algorithm analyzes your 

function by sampling it many times, perhaps a dozen times or more. It does 

this by repeatedly executing your subroutine. Finding a root will usually 

require about 2 to 10 seconds; but sometimes the process will require even 

more time. 

Press ´_ 0 and sit back while your HP-15C exhibits one of its 

powerful capabilities. The display flashes running while _ is 

operating. 

                                                           
* Press ´• 4 to obtain the displays shown here. The display setting does not influence the operation 

of _. 

† An algorithm is a step-by-step procedure for solving a mathematical problem. An iterative algorithm is one 

containing a portion that is executed a number of times in the process of solving the problem. 
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Keystrokes Display  

´_ 0 5.0000 The desired root. 

After the routine finds and displays the root, you can ensure that the 

displayed number is indeed a root of f(x) = 0 by checking the stack. You have 

seen that the display (X-register) contains the desired root. The Y-register 

contains a previous estimate of the root, which should be very close to the 

displayed root. The Z-register contains the value of your function 

evaluated at the displayed root. 

Keystrokes Display  

) 5.0000 A previous estimate of the 
root. 

) 0.0000 Value of the function at the 
root showing that f(x) = 0. 

Quadratic equations, such as the one you are solving, can have two roots. If 

you specify two new initial estimates, you can check for a second root. Try 

estimates of 0 and -10 to look for a negative root. 

Keystrokes Display  

0 v  0.0000 
Initial estimates. 

10 “ –10 

´ _ 0 –2.0000 The second root. 

) –2.0000 A previous estimate of the 

root. 

)  0.0000 Value of f(x) at second root. 
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You have now found the two roots of f(x) 

= 0. Note that this quadratic equation 

could have been solved algebraically – and 

you would have obtained the same roots 

that you found using _. 

G
G
r 

The convenience and power of the _ key become more apparent 

when you solve an equation for a root that cannot be determined 

algebraically. 

Example: Champion ridget hurler Chuck 

Fahr throws a ridget with an upward 

velocity of 50 meters/second. If the height 

of the ridget is expressed as 

h = 5000(1 – e
–t/20

) – 200t, 

how long does it take for it to reach the 

ground again? In this equation, h is the 

height in meters and t is the time in seconds. 

Solution: The desired solution is the positive value of t at which h = 0. 

Use the following subroutine to calculate the height. 

Keystrokes Display  

| ¥ 000–  

´ bA 001–42,21,11 Begin with label. 

2 002–       2 Subroutine assumes t is 

loaded in X-and Y-registers. 

0 003–       0  

÷ 004–      10  
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Keystrokes Display  

“ 005–       16 – t / 20. 

' 006–       12  

“ 007–       16 – e
– t / 20

. 

1 008–        1  

+ 009–       40 1 – e
– t / 20

. 

5 010–        5  

0 011–        0  

0 012–        0  

0 013–        0  

* 014–       20 5000 (1 – e
– t / 20

). 

® 015–       34 Brings another t-value 

  into X-register. 

2 016–        2  

0 017–        0  

0 018–        0  

* 019–       20 200t. 

- 020–       30 5000(1 – e
– t / 20

) – 200t. 

| n 021–    43 32  

Switch to Run mode, key in two initial estimates of the time (for example, 5 

and 6 seconds) and execute _. 

Keystrokes Display  

|¥  Run mode. 

5 v 5.0000 
Initial estimates. 

6 6 

´_A 9.2843 The desired root. 

Verify the root by reviewing the Y- and Z-registers. 
 

Keystrokes Display  

) 9.2843 A previous estimate of the root. 

) 0.0000 Value of the function at the root 

showing that h = 0. 
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Fahr's ridget falls to the ground 

9.2843 seconds after he hurls it—a 

remarkable toss. 

When No Root Is Found 

You have seen how the _ key estimates and displays a root of an 

equation of the form f(x) = 0. However, it is possible that an equation has no 

real roots (that is, there is no real value of x for which the equality is true). 

Of course, you would not expect the calculator to find a root in this case. 

Instead, it displays Error 8. 

Example: Consider the equation 

|x| = – 1. 

which has no solution since the absolute 

value function is never negative. Express 

this equation in the required form 

|x| + 1 = 0 

and attempt to use _ to find a 

solution. 

G
r
G 

Keystrokes Display  

| ¥ 000– Program mode. 

´b 1 001–42,21, 1  

| a 002–   43 16  

1 003–       1  

+ 004–      40  

| n 005–   43 32  
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Because the absolute-value function is minimum near an argument of zero, 

specify the initial estimates in that region, for instance 1 and -1. Then 

attempt to find a root. 

Keystrokes Display  

| ¥  Run mode. 

1 v  1.0000 
Initial estimates. 

1 “ –1 

´ _ 1  Error 8 This display indicates that no 

root was found. 

−  0.0000 Clear error display. 

As you can see, the HP-15C stopped seeking a root of f(x) = 0 when it 

decided that none existed – at least not in the general range of x to which it 

was initially directed. The Error 8 display does not indicate that an ―illegal‖ 

operation has been attempted; it merely states that no root was found where 

_ presumed one might exist (based on your initial estimates). 

If the HP-15C stops seeking a root and displays an error message, one of 

these three types of conditions has occurred: 

 If repeated iterations all produce a constant nonzero value for the 

specified function, execution stops with the display Error 8. 
 

If numerous samples indicate that the magnitude of the function 

appears to have a nonzero minimum value in the area being 

searched, execution stops with the display Error 8. 

 If an improper argument is used in a mathematical operation as part 

of your subroutine, execution stops with the display Error 0. 

In the case of a constant function value, the routine can see no indication of 

a tendency for the value to move toward zero. This can occur for a function 

whose first 10 significant digits are constant (such as when its graph levels 

off at a nonzero horizontal asymptote) or for a function with a relatively 

broad, local ―flat‖ region in comparison to the range of x-values being tried. 

In the case where the function's magnitude reaches a nonzero minimum, the 

routine has logically pursued a sequence of samples for which the 

magnitude has been getting smaller. However, it has not found a value of 

x at which the function's graph touches or crosses the x-axis. 
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The final case points out a potential deficiency in the subroutine rather than 

a limitation of the root-finding routine. Improper operations may sometimes 

be avoided by specifying initial estimates that focus the search in a region 

where such an outcome will not occur. However, the _ routine is very 

aggressive and may sample the function over a wide range. It is a good 

practice to have your subroutine test or adjust potentially improper 

arguments prior to performing an operation (for instance, use a prior to 

¤). Rescaling variables to avoid large numbers can also be helpful. 

The success of the _ routine in locating a root depends primarily 

upon the nature of the function it is analyzing and the initial estimates at 

which it begins searching. The mere existence of a root does not ensure that 

the casual use of the _ key will find it. If the function f(x) has a 

nonzero horizontal asymptote or a local minimum of its magnitude, the 

routine can be expected to find a root of f(x) = 0 only if the initial estimates 

do not concentrate the search in one of these unproductive regions—and, of 

course, if a root actually exists. 

Choosing Initial Estimates 

When you use _ to find the root of an equation, the two initial 

estimates that you provide determine the values of the variable x at which 

the routine begins its search. In general, the likelihood that you will find the 

particular root you are seeking increases with the level of understanding that 

you have about the function you are analyzing. Realistic, intelligent 

estimates greatly facilitate the determination of a root. 

The initial estimates that you use may be chosen in a number of ways: 

If the variable x has a limited range in which it is conceptually meaningful 

as a solution, it is reasonable to choose initial estimates within this range. 

Frequently an equation that is applicable to a real problem has, in addition 

to the desired solution, other roots that are physically meaningless. These 

usually occur because the equation being analyzed is appropriate only 

between certain limits of the variable. You should recognize this restriction 

and interpret the results accordingly. 
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If you have some knowledge of the behavior of the function f(x) as it varies 

with different values of x, you are in a position to specify initial estimates in 

the general vicinity of a zero of the function. You can also avoid the more 

troublesome ranges of x such as those producing a relatively constant 

function value or a minimum of the function's magnitude. 

Example: Using a rectangular piece 

of sheet metal 4 decimeters by 8 

decimeters, an open-top box having a 

volume of 7.5 cubic decimeters is to 

be formed. How should the metal be 

folded? (A taller box is preferred to a 

shorter one.) 

Solution: You need to find the height 

of the box (that is, the amount to be 

folded up along each of the four sides) 

that gives the specified volume. If x is 

the height (or amount folded up), the 

length of the box is (8 – 2x) and the width is (4 – 2x). The volume V is 

given by 

V = (8 – 2x)(4 – 2x) x. 

By expanding the expression and then using Horner's method (page 79), this 

equation can be rewritten as 

V = 4 ((x –  6) x + 8) x. 

To get V= 7.5, find the values of x for which 

f(x) = 4 ((x – 6) x + 8) x – 7.5 = 0. 

The following subroutine calculates f(x): 

Keystrokes Display  

| ¥ 000– Program mode. 

´b 3 001–42,21, 3 Label. 

6 002–       6 Assumes stack loaded with x. 
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Keystrokes Display  

- 003– 30  

* 004– 20 (x – 6) x. 

8 005– 8  

+ 005– 40  

* 007– 20 ((x – 6) x + 8) x. 

4 008– 4  

* 009– 20 4 ((x – 6) x + 8) x. 

7 010– 7  

. 011– 48  

5 012– 5  

- 013– 30  

|n 014– 43 32  

It seems reasonable that either a tall, narrow box or a short, flat box could 

be formed having the desired volume. Because the taller box is preferred, 

larger initial estimates of the height are reasonable. However, heights 

greater than 2 decimeters are not physically possible (because the metal is 

only 4 decimeters wide). Initial estimates of 1 and 2 decimeters are 

therefore appropriate. 

Find the desired height: 

Keystrokes Display  

| ¥  Run mode. 

1 v 1.0000 
Initial estimates. 

2 2 

´ _ 3 1.5000 The desired height. 

) 1.5000 Previous estimate. 

) 0.0000 f(x) at root. 
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By making the height 1.5 decimeters, a 

5.0×1.0×1.5-decimeter box is specified. 

If you ignore the upper limit on the 

height and use initial estimates of 3 and 

4 decimeters (still less than the width), 

you will obtain a height of 4.2026 

decimeters – a root that is physically 

meaningless. If you use small initial 

estimates such as 0 and 1 decimeter, 

you will obtain a height of 0.2974 

decimeter – producing an undesirably 

short, flat box. 

As an aid for examining the behavior of a function, you can easily evaluate 

the function at one or more values of x using your subroutine in program 

memory. To do this, fill the stack with x. Execute the subroutine to calculate 

the value of the function (press ´ letter label or G label. 

The values you calculate can be plotted to give you a graph of the function. 

This procedure is particularly useful for a function whose behavior you do 

not know. A simple-looking function may have a graph with relatively 

extreme variations that you might not anticipate. A root that occurs near a 

localized variation may be hard to find unless you specify initial estimates 

that are close to the root. 

If you have no informed or intuitive concept of the nature of the function or 

the location of the zero you are seeking, you can search for a solution using 

trial-and-error. The success of finding a solution depends partially upon the 

function itself. Trial-and-error is often – but not always – successful. 

 If you specify two moderately large positive or negative estimates and 

the function's graph does not have a horizontal asymptote, the routine 

will seek a zero which might be the most positive or negative (unless 

the function oscillates many times, as the trigonometric functions do). 

 If you have already found a zero of the function, you can check for 

another solution by specifying estimates that are relatively distant 

from any known zeros. 

Graph of f(x) 
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 Many functions exhibit special behavior when their arguments 

approach zero. You can check your function to determine values of x 

for which any argument within your function becomes zero, and then 

specify estimates at or near those values. 

Although two different initial estimates are usually supplied when using 

_, you can also use _ with the same estimate in both the X- and 

Y-registers. If the two estimates are identical, a second estimate is generated 

internally. If your single estimate is nonzero, the second estimate differs 

from your estimate by one count in the seventh significant digit. If your 

estimate is zero, 1×10
-7

 is used as the second estimate. Then the root-finding 

procedure continues as it normally would with two estimates. 

Using _ in a Program 

You can use the _ operation as part of a program. Be sure that the 

program provides initial estimates in the X- and Y-registers just prior to the 

_ operation. The _ routine stops with a value of x in the 

X-register and the corresponding function value in the Z-register. If the x-

value is a root, the program proceeds to the next line. If the x-value is not a 

root, the next line is skipped. (Refer also to Interpreting Results on page 226 

for a further explanation of roots.) Essentially, the _ instruction tests 

whether the x-value is a root and then proceeds according to the ―Do if 

True‖ rule. The program can then handle the case of not finding a root, such 

as by choosing new initial estimates or changing a function parameter. 

The use of _ as an instruction in a program utilizes one of the seven 

pending returns in the calculator. Since the subroutine called by _ 

utilizes another return, there can be only five other pending returns. 

Executed from the keyboard, on the other hand, _ itself does not 

utilize one of the pending returns, so that six pending returns are available 

for subroutines within the subroutine called by _. Remember that if 

all seven pending returns have been utilized, a call to another subroutine 

will result in a display of Error 5. (Refer to page 105.) 



 Section 13: Finding the Roots of an Equation 193 

 

Restriction on the Use of _ 

The one restriction regarding the use of _ is that _ cannot be 

used recursively. That is, you cannot use _ in a subroutine that is 

called during the execution of _. If this situation occurs, execution 

stops and Error 7 is displayed. It is possible, however, to use _ with 

f thereby using the advanced capabilities of both of these keys. 

Memory Requirements 

_ requires five registers to operate. (Appendix C explains how they 

are automatically allocated from memory.) If five unoccupied registers are 

not available, _ will not run and Error 10 will be displayed. 

A routine that combines _ and f requires 23 registers of space. 

For Further Information 

In appendix D, Advanced Use of _, additional techniques and 

explanations for using _ are presented. These include: 

 How _ works. 

 Accuracy of the root. 

 Interpreting results. 

 Finding several roots. 

 Limiting estimation time. 
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Section 14 

Numerical Integration 

Many problems in mathematics, science, and 

engineering require calculating the definite 

integral of a function. If the function is 

denoted by f(x) and the interval of integration 

is a to b, the integral can be expressed 

mathematically as 

.)( dxxfI
b

a  

The quantity I can be interpreted 

geometrically as the area of a region bounded by the graph of f(x), the 

x-axis, and the limits x = a and x = b.
*
 

When an integral is difficult or impossible to evaluate by analytical 

methods, it can be calculated using numerical techniques. Usually, this can 

be done only with a fairly complicated computer program. With your 

HP-15C, however, you can easily do numerical integration using the f 

(integrate) key.
†
 

Using f 

The basic rules for using f are: 

1. In Program mode, key in a subroutine that evaluates the function f(x) that 

you want to integrate. This subroutine must begin with a label 

instruction (´b label) and end up with a value for f(x) in the X-

register. 

                                                           
* Provided that f(x) is nonnegative throughout the interval of integration. 
† The f function does not use the imaginary stack. Refer to the HP-15C Advanced Functions Handbook 

for information about using f in Complex mode. 
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 In Run mode: 

2. Key the lower limit of integration (a) into the X-register, then press 

v to lift it into the Y-register. 

3. Key the upper limit of integration (b) in to the X-register. 

4. Press ´ f followed by the label of your subroutine. 

Example: Certain problems in physics and engineering require calculating 

Bessel functions. The Bessel function of the first kind of order 0 can be 

expressed as 


π

0
0   )sin  ( cos 

π

1
)( dθθxxJ . 

Find 


π

0
0   )(sin  cos 

π

1
(1) dθθJ . 

In Program mode, key in the following subroutine to evaluate the function 

f(θ) = cos (sin θ). 

Keystrokes Display  

|¥ 000– Program mode. 

´ CLEAR M 000– Clear program memory. 

´b 0 001–42,21, 0 Begin subroutine with a 

b instruction. 

Subroutine assumes a 

value of θ is in X-register. 

[ 002–      23 Calculate sin θ. 

\ 003–      24 Calculate cos (sin θ). 

|n 004–   43 32  

Now, in Run mode key the lower limit of integration into the Y-register and 

the upper limit into the X-register. For this particular problem, you also 

need to specify Radians mode for the trigonometric functions. 

 



196 Section 14: Numerical Integration 

 

Keystrokes Display  

| ¥  Run mode. 

0 v 0.0000 Key lower limit, 0, into Y-

register. 

| $ 3.1416 Key upper limit, π, into X-

register. 

|R 3.1416 Specify Radians mode for 

trigonometric functions. 

Now you are ready to press ´f 0 to calculate the integral. When you 

do so, you'll find that – just as with _ – the calculator will not display 

the result right away, as it does with other operations. The HP-15C 

calculates integrals using a sophisticated iterative algorithm. Briefly, this 

algorithm evaluates f(x), the function to be integrated, at many values of x 

between the limits of integration. At each of these values, the calculator 

evaluates the function by executing the subroutine you write for that 

purpose. When the calculator must execute the subroutine many times – as 

it does when you press f – you can't expect any answer right away. Most 

integrals will require on the order of 2 to 10 seconds; but some integrals 

will require even more. Later on we'll discuss how you can decrease the 

time somewhat; but for now press ´f 0 and take a break (or read 

ahead) while the HP-15C takes care of the drudgery for you. 

Keystrokes Display  

´f 0 2.4040 
π
0 dθ θ)(sin  cos . 

In general, don't forget to multiply the value of the integral by whatever 

constants, if any, are outside the integral. In this particular problem, we 

need to multiply the integral by 1/ π to get J0 (1): 

Keystrokes Display  

|$ 3.1416  

÷ 0.7652 J0 (1). 
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Before calling the subroutine you provide to evaluate f(x), the f 
algorithm – just like the _ algorithm – places the value of x in the X-, 

Y-, Z-, and T-registers. Because every stack register contains the x-value, 

your subroutine can calculate with this number without having to recall it 

from a storage register. The subroutines in the next two examples take 

advantage of this feature. (A polynomial evaluation technique that assumes 

the stack is filled with the value of x is discussed on page 79.) 

Note: Since the calculator puts the value of x into all stack 

registers, any numbers previously there will be replaced by x. 

Therefore, if the stack contains intermediate results that you'll 

need after you calculate an integral, store those numbers in 

storage registers and recall them later. 

Occasionally you may want to use the subroutine that you wrote 

for the f operation to merely evaluate the function at some 

value of x. If you do so with a function that gets x from the stack 

more than once, be sure to fill the stack manually with the value 

of x, by pressing vvv, before you execute the 

subroutine. 

Example: The Bessel function of the first kind of order 1 can be expressed 

as 

.  )sin   - (  cos  
π

1
)(

π

0
1  dθθxxJ   

Find  

.  )sin   - (  cos  
π

1
)(

π

0
1  dθθ1J   

Key in the following subroutine that evaluates the function  

f(θ) = cos (θ - sin θ). 

Keystrokes Display  

| ¥ 000-  Program mode. 

´ b 1 001-42,21,  1 Begin subroutine with a label. 
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Keystrokes Display  

[ 002– 23 Calculate sin θ. 

- 003– 30 Since a value of θ will be 

placed into the Y-register by 

the f algorithm before it 

executes this subroutine, the 

- operation at this point 

will calculate  

(θ – sin θ). 

\  004–  24 Calculate cos (θ – sin θ). 

|n 005–  43 32  

In Run mode, key the limits of integration into the X- and Y-registers. Be 

sure that the trigonometric mode is set to Radians, then press ´f 1 to 

calculate the integral. Finally, multiply the integral by 1/π to calculate 

J1 (1). 

Keystrokes Display  

|¥  Run mode. 

0 v 0.0000 Key lower limit into  

Y-register. 

| $ 3.1416 Key upper limit into  

X-register. 

| R 3.1416 (If not already in 

Radians mode.) 

´f 1 1.3825 

 
|$ ÷ 0.4401 J1 (1). 

 

Example: Certain problems in 

communications theory (for example, pulse 

transmission through idealized networks) 

require calculating an integral (sometimes 

called the sine integral) of the form 


t

dx
x

x
tSi

0

)sin(
)( . 
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Find Si(2). 

Key in the following subroutine to evaluate the function f(x) = (sin x) / x.
*
 

Keystrokes Display  

|¥ 000– Program mode. 

´ b .2 001–42,21, .2 Begin subroutine with a b 

instruction. 

[ 002– 23 Calculate sin x. 

® 003– 34 Since a value of x will be 

placed in the Y-register by the 

f algorithm before it 

executes this subroutine, the 

® operation at this point 

will return x to the X-register 

and move sin x to the Y-

register. 

÷ 004– 10 Divide sin x by x. 

| n 005–    43 32  

Now key the limits of integration into the X- and Y-registers. In Radians 

mode, press ´f .2 to calculate the integral. 

Keystrokes Display  

|¥ 0.4401 Run mode. 

0 v 0.0000 Key lower limit into Y-

register. 

2 2 Key upper limit, into X-

register. 

| R 2.0000 (If not already in Radians 

mode.) 

´f .2 1.6054 Si(2). 

                                                           
* If the calculator attempted to evaluate f(x) = (sin x)/x at x = 0, the lower limit of integration, it would 

terminate with Error 0 in the display (signifying an attempt to divide by zero), and the integral could not 

be calculated. However, the f algorithm normally does not evaluate functions at either limit of 

integration, so the calculator can calculate the integral of a function that is undefined there. Only when the 

endpoints of the interval of integration are extremely close together, or the number of sample points is 

extremely large, does the algorithm evaluate the function at the limits of integration. 
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Accuracy of f 

The accuracy of the integral of any function depends on the accuracy of the 

function itself. Therefore, the accuracy of an integral calculated using f 

is limited by the accuracy of the function calculated by your subroutine.
*
 To 

specify the accuracy of the function, set the display format so that the 

display shows no more than the number of digits that you consider accurate 

in the function's values.
†
 If you specify fewer digits, the calculator will 

compute the integral more quickly;
‡
 but it will presume that the function is 

accurate to only the number of digits specified in the display format. We'll 

show you how you can determine the accuracy of the calculated integral 

after we say another word about the display format. 

You'll recall that the HP-15C provides three types of display formatting: 

•, i, and ^. Which display format should be used is largely a 

matter of convenience, since for many integrals you'll get about the same 

results using any of them (provided that the number of digits is specified 

correctly, considering the magnitude of the function). Because it's more 

convenient to use i display format when calculating most integrals, 

we'll use i when calculating integrals in subsequent examples. 

Note: Remember that once you have set the display format, you 

can change the number of digits appearing in the display by storing 

a number in the Index register and then pressing ´ • V, 
´ i V, or ´ ^ V, as described in section 10. 

This capability is especially useful when f is executed as part 

of a program. 

                                                           
* It is possible that integrals of functions with certain characteristics (such as spikes or very rapid 

oscillations) might be calculated inaccurately. However, this possibility is very small. The general 

characteristics of functions that could cause problems, as well as techniques for dealing with them, are 

discussed in appendix E. 

† The accuracy of a calculated function depends on such considerations as the accuracy of empirical 

constants in the function as well as round–off error in the calculations. These considerations are discussed 

in more detail in the HP-15C Advanced Functions Handbook. 

‡ The reason for this is discussed in appendix E. 



 Section 14: Numerical Integration 201 

 

Because the accuracy of any integral is limited by the accuracy of the 

function (as indicated in the display format), the calculator cannot compute 

the value of an integral exactly, but rather only approximates it. The 

HP-15C places the uncertainty
*
 of an integral's approximation in the Y-

register at the same time it places the approximation in the X-register. To 

determine the accuracy of an approximation, check its uncertainty by 

pressing ®. 

Example: With the display format set to i 2, calculate the integral in 

the expression for J1(1) (from the example on page 197). 

Keystrokes Display  

0 v 0.0000 Key lower limit into  

Y-register. 

|$ 3.1416 Key upper limit into  

X-register. 

| R 3.1416 (If not already in Radians mode.) 

´ i 2 3.14 00 Set display format to i 2. 

´ f 1 1.3

8 

00 Integral approximated in i 2. 

® 1.8

8 

-

03 
Uncertainty of i 2 

approximation. 

The integral is 1.38 ± 0.00188. Since the uncertainty would not affect the 

approximation until its third decimal place, you can consider all the 

displayed digits in this approximation to be accurate. In general, though, it 

is difficult to anticipate how many digits in an approximation will be 

unaffected by its uncertainty. This depends on the particular function being 

integrated, the limits of integration, and the display format. 

                                                           
* No algorithm for numerical integration can compute the exact difference between its approximation and 

the actual integral. But the algorithm in the HP-15C estimates an ―upper bound‖ on this difference, which 

is the uncertainty of the approximation. For example, if the integral Si (2) is 1.6054 ± 0.0001, the 

approximation to the integral is 1.6054 and its uncertainty is 0.0001. This means that while we don't know 

the exact difference between the actual integral and its approximation, we do know that it is highly 

unlikely that the difference is bigger than 0.0001. (Note the first footnote on page 200.) 
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If the uncertainty of an approximation is larger than what you choose to 

tolerate, you can decrease it by specifying a greater number of digits in the 

display format and repeating the approximation.
*
 

Whenever you want to repeat an approximation, you don't need to key the 

limits of integration back into the X- and Y-registers. After an integral is 

calculated, not only are the approximation and its uncertainty placed in the 

X- and Y-registers, but in addition the upper limit of integration is placed in 

the Z-register, and the lower limit is placed in the T-register. To return the 

limits to the X- and Y-registers for calculating an integral again, simply 

press ) ). 

Example: For the integral in the expression for J1(l), you want an answer 

accurate to four decimal places instead of only two. 

Keystrokes Display  

´ i 4 1.8826 -03 Set display format to i 4. 

)) 3.1416 00 Roll down stack until upper 

limit appears in X-register. 

´f 1 1.3825 00 Integral approximated in 

i4. 

® 
1.7091 -05 

Uncertainty of i  

4 approximation. 

The uncertainty indicates that this approximation is accurate to at least four 

decimal places. Note that the uncertainty of the i 4 approximation is 

about one-hundredth as large as the uncertainty of the i 2 

approximation. In general, the uncertainty of any f approximation 

decreases by about a factor of 10 for each additional digit specified in the 

display format. 

                                                           
* Provided that f(x) is still calculated accurately to the number of digits shown in the display. 
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In the preceding example, the uncertainty indicated that the approximation 

might be correct to only four decimal places. If we temporarily display all 

10 digits of the approximation, however, and compare it to the actual value 

of the integral (actually, an approximation known to be accurate to a 

sufficient number of decimal places), we find that the approximation is 

actually more accurate than its uncertainty indicates. 

Keystrokes Display  

® 1.382

5 

 00 Return approximation to 

display. 

´ CLEAR u 1382459676 All 10 digits of 

approximation. 

The value of this integral, correct to eight decimal places, is 1.38245969. The 

calculator's approximation is accurate to seven decimal places rather than 

only four. In fact, since the uncertainty of an approximation is calculated 

very conservatively, the calculator's approximation, in most cases will be 

more accurate than its uncertainty indicates. However, normally there is no 

way to determine just how accurate an approximation is. 

For a more detailed look at the accuracy and uncertainty of f 

approximations, refer to appendix E. 

Using f in a Program 

f can appear as an instruction in a program provided that the program is 

not called (as a subroutine) by f itself. In other words, f cannot be 

used recursively. Consequently, you cannot use f to calculate multiple 

integrals; if you attempt to do so, the calculator will halt with Error 7 in the 

display. However, f can appear as an instruction in a subroutine called 

by _. 

The use of f as an instruction in a program utilizes one of the seven 

pending returns in the calculator. Since the subroutine called by f 

utilizes another return, there can be only five other pending returns. 

Executed from the keyboard, on the other hand, f itself does not utilize 

one of the pending returns, so that six pending returns are available for 

subroutines within the subroutine called by f Remember that if all seven 

pending returns have been utilized, a call to another subroutine will result in 

a display of Error 5. (Refer to page 105.) 
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Memory Requirements 

f requires 23 registers to operate. (Appendix C explains how they are 

automatically allocated from memory.) If 23 unoccupied registers are not 

available, f will not run and Error 10 will be displayed. 

A routine that combines f and _ also requires 23 registers of 

space. 

For Further Information 

This section has given you the information you need to use f with 

confidence over a wide range of applications. In appendix E, more esoteric 

aspects of f are discussed. These include: 

 How f works. 

 Accuracy, uncertainty, and calculation time. 

 Uncertainty and the display format. 

 Conditions that could cause incorrect results. 

 Conditions that prolong calculation time. 

 Obtaining the current approximation to an integral. 
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Appendix A 

Error Conditions 
If you attempt a calculation containing an improper operation – say division 

by zero – the display will show Error and a number. To clear an error 

message, press any one key. This also restores the display prior to the Error 

display. 

The HP-15C has the following error messages. (The description of Error 2 

includes a list of statistical formulas used.) 

Error 0:  Improper Mathematics Operation 

Illegal argument to math routine: 

÷, where x = 0. 

y, where: 

 out of Complex mode, y < 0 and x is noninteger; 

 out of Complex mode, y = 0 and x ≤ 0; or 

 in Complex mode, y = 0 and Re(x) ≤ 0. 

¤, where, out of Complex mode, x < 0. 

∕, where x = 0. 

o, where: 

 out of Complex mode, x ≤ 0; or 

 in Complex mode, x = 0. 

Z, where: 

 out of Complex mode, x ≤ 0; or 

 in Complex mode, x = 0. 

,, where, out of Complex mode, │x│> l. 

{, where, out of Complex mode, │x│> l. 

O ÷, where x = 0. 

l ÷, where the contents of the addressed register = 0. 

∆, where the value in the Y-register is 0. 

H \, where, out of Complex mode, x< 1. 

H ], where, out of Complex mode, │x│> 1. 

c p, where: 
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 x or y is noninteger; 

 x < 0 or y < 0; 
 x > y; 

 x or y ≥ 10
10

. 

Error 1:  Improper Matrix Operation 

Applying an operation other than a matrix operation to a matrix, that is, 

attempting a nonmatrix operation while a matrix is in the relevant register 

(whether the X- or Y-register or a storage register). 

Error 2:  Improper Statistics Operation 
 

’ n = 0 

S n ≤ 1 

j n ≤ 1 

L n ≤ 1 

Error 2 is also displayed if division by zero or the square root of a negative 

number would be required during computation with any of the following 

formulas: 

n

x
x


  

n

y
y


  

1)( 


n n

M

x
s  

1)( 


n n

N

y
s  

NM

P
r


  

M

P
A   

Mn

xPyM
B




  

 
Mn

xxnPyM
y




ˆ  

 

where: 

M = nΣx
2
 – (Σx)

2
 

N = nΣy
2 
 – (Σy)

2
 

P = nΣxy – ΣxΣy 

(A and B are the values returned by the operation   

L, where y= Ax + B.) 
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Error 3:  Improper Register Number or Matrix Element 

Storage register named is nonexistent or matrix element indicated is 

nonexistent. 

Error 4:  Improper Line Number or Label Call 
Line number called for is currently unoccupied or nonexistent (>448); or 

you have attempted to load a program line without available space; or the 

label called does not exist; or User mode is on and you did not press ´ 

before ¤, ', @, y or ∕. 

Error 5: Subroutine Level Too Deep 

Subroutine nested more than seven deep. 

Error 6:  Improper Flag Number 

Attempted a flag number >9. 

Error 7:  Recursive _ or f 

A subroutine which is called by _ also contains a _ instruction; 

a subroutine which is called by f also contains an f instruction. 

Error 8: No Root 

_ unable to find a root using given estimates. 

Error 9: Service 

Self-test discovered circuitry problem, or wrong key pressed during key 

test.  

Error 10: Insufficient Memory 

There is not enough memory available to perform a given operation. 

Error 11: Improper Matrix Argument 

Inconsistent or improper matrix arguments for a given matrix operation: 
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+ or -, where the dimensions are incompatible. 

*, where: 

 the dimensions are incompatible; or 

 the result is one of the arguments. 

∕, where the matrix is not square. 

scalar/matrix ÷, where the matrix is not square. 

÷, where: 

 the matrix in the X-register is not square; 

 the dimensions are incompatible; or 

 the result is the matrix in the X-register. 

> 2, where the input is a scalar; or the number of rows is odd. 

> 3, where the input is a scalar; or the number of columns is odd. 

> 4, where the input is scalar. 

> 5, where: 

 the input is a scalar; 

  the dimensions are incompatible; or 

  the result is one of the arguments. 

> 6, where: 

 the input is scalar; 

 the dimensions are incompatible (including the result); or 

 the result is one of the arguments. 

> 9, where the matrix is not square. 

l m V, where contents of RI are scalar. 

m V, where contents of RI are scalar. 

O <, where the input is scalar. 

p, where the number of columns is odd. 

c, where the number of rows is odd. 

Pr Error (Power Error) 

Continuous Memory interrupted and reset because of power failure. 
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Appendix B 

Stack Lift and 

the LAST X Register 

The HP-15C calculator has been designed to operate in a natural manner. 

As you have seen working through this handbook, most calculations do not 

require you to think about the operation of the automatic memory stack. 

There are occasions, however – especially as you delve into programming – 

when you need to know the effect of a particular operation upon the stack. 

The following explanation should help you. 

Digit Entry Termination 

Most operations on the calculator, whether executed as instructions in a 

program or pressed from the keyboard, terminate digit entry. This means 

that the calculator knows that any digits you key in after any of these 

operations are part of a new number. 

The only operations that do not terminate digit entry are the digit entry keys 

themselves: 

 

0 through 9 “ − 

. ‛  

Stack Lift 

There are three types of operations on the calculator based on how they 

affect stack lift. These are stack-disabling operations, stack-enabling 

operations, and neutral operations. 

When the calculator is in Complex mode, each operation affects both the 

real and imaginary stacks. The stack lift effects are the same. In addition, 

the number keyed into the display (real X-register) after any operation 

except − or ` is accompanied by the placement of a zero in the 

imaginary X-register. 
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Disabling Operations 

Stack Lift. There are four stack-disabling operations on the calculator.
*
 

These operations disable the stack lift, so that a number keyed in after one 

of these disabling operations writes over the current number in the 

displayed X-register and the stack does not lift. These special disabling 

operations are: 

v    `    z    w 

Imaginary X-Register. A zero is placed in the imaginary X-register when 

the next number following v, z, or w is keyed or recalled into 

the display (real X-register). However, the next number keyed in or recalled 

after − or ` does not change the contents of the imaginary X-

register. 

Enabling Operations 

Stack Lift. Most of the operations on the keyboard, including one-and two-

number mathematical functions like x and *, are stack-enabling 

operations. This means that a number keyed in after one of these operations 

will lift the stack (because the stack has been ―enabled‖ to lift). Both the 

real and imaginary stacks are affected. (Recall that a shaded X-register 

means that its contents will be written over when the next number is keyed 

in or recalled.) 

 

T t  z  y  y 

Z z  y  x  x 

Y y  x  4.0000  4.0000 

X x  4  4.0000  3 

Keys:  4 v 3  

 (Assumes 
stack 

enabled.) 

 Stack 
lifts. 

 Stack 
disabled. 

 No stack 
lift. 

                                                           
* Refer to footnote, page 36. 
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T y  y  y  y 

Z x  x  x  x 

Y 4.0000  53.1301  53.1301  53.1301 

X 3  5.0000  0.0000  7 

Keys: |:               |` 7  

   Stack 
enabled. 

 Stack 
disabled. 

 No stack 
lift. 

Imaginary X-Register. All enabling functions provide for a zero to be 

placed in the imaginary X-register when the next number is keyed or 

recalled into the display. 

Neutral Operations 

Stack Lift. Some operations, like •, are neutral; that is, they do not 

alter the previous status of the stack lift. Thus, if you disable the stack lift 

by pressing v, then press ´ • n and key in a new number, that 

number will write over the number in the X-register and the stack will not 

lift. Similarly, if you have previously enabled the stack lift by executing, 

say ¤, then execute a • instruction followed by a digit entry 

sequence, the stack will lift.
*
 

The following operations are neutral on the HP-15C: 

• g U ¦ 

i t “ nnn CLEAR u ¥ 

^ ‚ CLEAR Q %†
 

D Â CLEAR ∑  

R W ©  

Imaginary X-Register. The above operations are also neutral with respect 

to clearing the imaginary X-register. 

                                                           
* All digit entry functions are also neutral during digit entry. After digit entry termination, “ and ‛ 

are lift enabling, − is disabling. 

† That is, the ´ % sequence used to view the imaginary X-register. 
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LAST X Register 

The following operations save x in the LAST X register: 

 

- x H \ k 

+ [ H ] ∆ 

* \ h : 

÷ ] À ; 

a , d p
*
 

q { r c*
 

‘ / N z 

& P[ ' w 

∕ P\ o j 

! P] @ > 5 through 9 

¤ H[ Y f
†
 

 

                                                           
* Except when used as a matrix function. 

† f uses the LAST X register in a special way, as described in appendix E. 
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Appendix C 

Memory Allocation 

The Memory Space 

Storage registers, program lines, and advanced function execution
*
 all draw 

on a common memory space in the HP-15C. The availability of memory for 

a specific purpose depends on the current allocation of memory, as well as 

on the total memory capacity of the calculator. 

Registers 

Memory space in the HP-15C is allocated on the basis of registers. This 

space is partitioned into two pools, which strictly define how a register may 

be used. There is always a combined total of 67 registers in these two pools. 

 The data storage pool contains registers which may be used only 

for data storage. At power-up (Continuous Memory reset) this 

equals 21 registers. This pool contains at least three registers at all 

times: RI, R0, and R1. 

 The common pool contains uncommitted registers available for 

allocation to programming, matrices, the imaginary stack, and 

_ and f operation. At power-up there are 46 uncommitted 

registers in the common pool. 

                                                           
* The use of _, f, Complex mode, or matrices temporarily requires extra memory space, as 

explained later in this appendix. 



214 Appendix C: Memory Allocation 

 

 

Total allocatable memory: 64 registers, numbered R2 through R65.  

[(dd – 1) + uu + pp + (matrix elements) + (imaginary stack) + (_ 

and f)] = 64. For memory allocation and indirect addressing, data 

registers R.0 through R.9 are referred to as R10 through R19. 
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Memory Status (W) 

To view the current memory configuration of the calculator, press | 

W (memory), holding W to retain the display.
*
 The display will be 

four numbers, 

dd    uu   pp-b 

where: 

dd = the number of the highest-numbered register in the data storage 

pool (making the total number of data registers dd + 2 because of R0 

and RI); 

uu = the number of uncommitted registers in the common pool; 

pp = the number of registers containing program instructions; and 

b   = the number of bytes left before uu is decremented (to supply seven 

more bytes of program memory) and pp is incremented. 

The initial status of the HP-15C at power-up is: 

19    46    0-0 

The movable boundary between the data storage and common pools is 

always between Rdd and Rdd + 1. 

Memory Reallocation 

There are 67 registers in memory, worth seven bytes each. Sixty-four of 

these registers (R2 to R65) are interconvertible between the data storage and 

common pools. 

The m % Function 

If you should require more common space (as for programming) or more 

data storage space (but not both simultaneously!), you can make the 

necessary register reallocation using m %.
†
 The procedure is: 

 

                                                           
* MEM is nonprogrammable. 

† m (dimension) is so called because it is also used (with A through E or V) to dimension 

matrices. Above, however, it is used (with %) to ―dimension‖ the size of the data storage pool. 
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1. Place dd, the number of the highest data storage register you want 

allocated, into the display. 1dd65. The number of registers in the 

uncommitted pool (and therefore potentially available for 

programming) will be (65 – dd). 

2. Press ´ m %. 

There are two ways to review your allocation: 

 Press lm % to recall into the stack the number of the 

highest-allocated data storage register, dd. (Programmable.) 

 Press | W (as explained above) to view a more complete 

memory status (dd uu pp-b). 

Keystrokes Display  

(assuming a cleared program memory)
*
 

1 ´ m % 1.0000 R1, R0, and RI 

allocated for data storage. Sixty-

four registers are uncommitted; 

none contain program instructions. 

| W (hold) 1 64  0-0 

19 ´ m 
% 

19.0000 R19 (R.9) is the highest-numbered 

data storage register. Forty-six 

registers left in the common pool. l m % 19.0000 

Restrictions on Reallocation 

Continuous Memory will maintain the configuration you allocate until a 

new m % is executed or Continuous Memory is reset. If you try to 

allocate a number less than 1, dd = 1. If you try to allocate a number greater 

than 65, Error 10 results. 

                                                           
* If program memory is not cleared, the number of uncommitted registers (uu) is less owing to allocation of 

registers to program memory (pp). Therefore, pp would be >0 and b would vary. 
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When converting registers, note that: 

 You can convert registers from the common pool only if they are 

uncommitted. If, for example, you try to convert registers which 

contain program instructions, you will get an Error 10 (insufficient 

memory). 

 You can convert occupied registers from the data storage pool, 

causing a loss of stored data. An Error 3 results if you try to 

address a "lost" – that is, nonexistent – register. Therefore, it is 

good practice to store data in the lowest-numbered registers first, 

as these are the last to be converted. 

 

Program Memory 

As mentioned before, each register consists of seven bytes of memory. 

Program instructions use one or two bytes of memory. Most program lines 

use one byte; those using two bytes are listed on page 218. 

The maximum programming capacity of the HP-15C is 448 program bytes 

(64 convertible registers at seven bytes per register). At power-up, memory 

can hold up to 322 program bytes (46 allocated registers at seven bytes 

per register). 

Automatic Program Memory Reallocation 

Within the common register pool, program memory will automatically 

expand as needed. One uncommitted register at a time, starting with the 

highest-numbered register available, will be allocated to seven bytes of 

program memory. 

Conversion of Uncommitted Registers to Program Memory 
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Your very first program instruction will commit R65 (all seven bytes) from 

an uncommitted register to a program register. Your eighth program 

instruction commits R64, and so on, until the boundary of the common pool 

is encountered. Registers from the data storage pool (at power-up, this is R19 

and below) are not available for program memory without reallocating 

registers using m %. 

Two-Byte Program Instructions 

The following instructions are the only ones which require two bytes of 

calculator memory. (All others require only one byte.) 

´ b . label ´ > {0 to 9} 

t . label ´ X {2 to 9, .0 to .9} 

| " (n or V) ´ e {2 to 9, .0 to .9} 

|F (n or V) ´ I {2 to 9, .0 to .9} 

| ? (n or V) O {+, -, *, ÷} 

´ • (n or V) l {+, -, *, ÷} 

´ i (n or V) O > {A to E} 

´ ^ (n or V) O {A to E, %} in User 

mode 

´ _ l {A to E, %} in User 

mode 

´ f O | % 

 l | % 

Memory Requirements for the Advanced Functions 

The four advanced functions require temporary register space from the 

common register pool. 

Function Registers Needed 

_  

f  
 

5 

23 

 

 23 if executed 
together 

Complex Stack 5 

Matrices 1 per matrix element 
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For _ and f, allocation and deallocation of the required register 

space takes place automatically.
*
 Memory is thereby allocated only for the 

duration of these operations. 

Space for the imaginary stack is allocated whenever ´ V, ´ 

}, or | F 8 is pressed. The imaginary stack is deallocated when 

" 8 is executed. 

Space for matrix registers is not allocated until you dimension it (using 

m). Reallocation takes place when you redimension a matrix. > 

0 dimensions all matrices to 0  0. 

 

                                                           
* If you should interrupt a _ or f routine in progress by pressing a key, you could deallocate its 

registers by pressing |n or ´ CLEAR M in Run mode. 
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Appendix D 

A Detailed Look at _ 

Section 13, Finding the Roots of an Equation, includes the basic 

information needed for the effective use of the _ algorithm. This 

appendix presents more advanced, supplemental considerations regarding 

_. 

How _ Works 

You will be able to use _ most effectively by having a basic 

understanding of how the algorithm works. 

In the process of searching for a zero of the 

specified function, the algorithm uses the 

value of the function at two or three 

previous estimates to approximate the shape 

of the function’s graph. The algorithm uses 

this shape to intelligently ―predict‖ a new 

estimate where the graph might cross the x-

axis. The function subroutine is then 

executed, computing the value of the 

function at the new estimate. This procedure is performed repeatedly by the 

_ algorithm. 

If any two estimates yield function values 

with opposite signs, the algorithm presumes 

that the function's graph must cross the x-

axis in at least one place in the interval 

between these estimates. The interval is 

systematically narrowed until a root of the 

equation is found. 

A root is successfully found either if the 

computed function value is equal to zero or 

if two estimates, differing by one unit in their last significant digit, give 

function values having opposite signs. In this case, execution stops and the 

estimate is displayed. 
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As discussed in section 13, page 186, the occurrence of other situations in 

the iteration process indicates the apparent absence of a function zero. The 

reason is that there is no way to logically predict a new estimate that is 

likely to have a function value closer to zero. In such cases, Error 8 is 

displayed. 

You should note that the initial estimates you provide are used to begin the 

"prediction" process. By permitting more accurate predictions than might 

otherwise occur, properly chosen estimates greatly facilitate the 

determination of the root you seek. 

The _ algorithm will always find a root provided one exists 

(within the overflow bounds), if any one of four conditions are met: 

 
 Any two estimates have function 

values with opposite signs. 

 
 

 
 The function is monotonic, meaning 

that f(x) either always decreases or 

else always increases as x is 

increased. 
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 The function's graph is either 

convex everywhere or concave 

everywhere. 

 
 

 The only local minima and 

maxima of the function's graph 

occur singly between adjacent 

zeros of the function. 

 

In addition, it is assumed that the _ algorithm will not be interrupted 

by an improper operation. 

Accuracy of the Root 

When you use the _ key to find a root of an equation, the root is 

found accurately. The displayed root either gives a calculated function value 

(f(x)) exactly equal to zero or else is a 10-digit number virtually adjacent to 

the place where the function's graph crosses the x-axis. Any such root has 

an accuracy within two or three units in the 10th significant digit. 

In most situations the calculated root is an accurate estimate of the 

theoretical (infinitely precise) root of the equation. However, certain 

conditions can cause the finite accuracy of the calculator to give a result that 

appears to be inconsistent with your theoretical expectation. 
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If a calculation has a result whose magnitude is smaller than 

1.000000000×10
-99

, the result is set equal to zero. This effect is referred to 

as ―underflow.‖ If the subroutine that calculates your function encounters 

underflow for a range of x and if this affects the value of the function, then a 

root in this range may be expected to have some inaccuracy. For example, 

the equation 

x
4 
= 0 

has a root at x = 0. Because of underflow, _ produces a root of  

1.5060  -25 (for initial estimates of 1 and 2). As another example, 

consider the equation 

l / x
2
 = 0 

whose root is infinite in value. Because of underflow, _ gives a root 

of 3.1707  49 (for initial estimates of 10 and 20). In each of these 

examples, the algorithm has found a value of x for which the calculated 

function value equals zero. By understanding the effect of underflow, you 

can readily interpret results such as these. 

The accuracy of a computed value sometimes can be adversely affected by 

―round-off‖ error, by which an infinitely precise number is rounded to 10 

significant digits. If your subroutine requires extra precision to properly 

calculate the function for a range of x, the result obtained by _ may 

be inaccurate. For example, the equation 

| x
2 
– 5 | = 0 

has a root at x = 5 . Because no 10-digit number exactly equals 5 , the 

result of using _ is Error 8 (for any initial estimates) because the 

function never equals zero nor changes sign. On the other hand, the 

equation 

[(|x| + 1) + 10
15

]
2 
= 10

30
 

has no roots because the left side of the equation is always greater than the 

right side. However, because of round-off in the calculation of 

f(x) = [(|x| + 1) + 10
15

]
2 
- 10

30
, 
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the root 1.0000 is found for initial estimates of 1 and 2. By recognizing 

situations in which round-off error may influence the operation of _, 

you can evaluate the results accordingly and perhaps rewrite the function to 

reduce the effects of round-off. 

In a variety of practical applications, the parameters in an equation – or 

perhaps the equation itself – are merely approximations. Physical 

parameters have an inherent accuracy (or inaccuracy). Mathematical 

representations of physical processes are only models of those processes, 

accurate only to the extent that the underlying assumptions are true. An 

awareness of these and other inaccuracies can be used to your advantage. 

By structuring your subroutine to return a function value of zero when the 

calculated value is negligible for practical purposes, you can usually save 

considerable time in finding a root with _ – particularly for cases that 

would normally take a long time. 

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to heights 

of 105 meters and more. In fact, Fahr’s hurls usually reach a height of 

107 meters. How long does it take for his remarkable toss, described on 

page 184 in section 13, to reach 107 meters? 

Solution: The desired solution is the value of t at which h = 107. Enter the 

subroutine from page 184 that calculates the height of the ridget. This 

subroutine can be used in a new function subroutine to calculate  

f(t) = h(t) – 107. 

The following subroutine calculates f(t): 

Keystrokes Display  

| ¥ 000– Program mode. 

´b B 001–42,21,12 Begin with new label. 

G A 002–   32 11 Calculates h(t). 

1 003–       1  

0 004–       0  

7 005–       7 Calculates h(t) – 107. 

- 006–      30  

|n 007–   43 32  
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In order to find the first time at which the height is 107 meters, use initial 

estimates of 0 and 1 second and execute _ using B. 

Keystrokes Display 

| ¥   Run mode. 

0 v 0.0000  
Initial estimates. 

1 1 

´ _ 
B 

4.1718  The desired root. 

) 4.1718  A previous estimate of the root. 

) 0.0000  Value of f(t) at root. 

It takes 4.1718 seconds for the ridget to reach a height of exactly 107 

meters. (It takes approximately two seconds to find this solution.) 

However, suppose you assume that the function h(t) is accurate only to the 

nearest whole meter. You can now change your subroutine to give f(t) = 0 

whenever the calculated magnitude of f(t) is less than 0.5 meter. Change 

your subroutine as follows: 

Keystrokes Display 

| ¥ 000- Program mode. 

t “ 006 006–      30 Line before n instruction. 

| a 007–   43 16 Magnitude of f(t). 

. 008–      48  Accuracy 

5 009–       5 

| T 7 010–43,30, 7  
Test for x > y and return  

zero if accuracy >  

magnitude (0.5 > | f(t) | ). 
| ` 011–   43 35  

| T 0 012–43,30, 0  Test for x ≠ 0 and restore 

| K 013–   43 36  f(t) if value is nonzero. 
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Execute _ again: 

Keystrokes Display 

| ¥   Run mode. 

0 v 0.0000  
Initial estimates. 

1 1 

´ v B 4.0681  The desired root. 

) 4.0681  A previous estimate of the 

root. 

) 0.0000  Value of modified f(t) at root. 

After 4.0681 seconds, the ridget is at a height of 107 ± 0.5 meters. This 

solution, although different from the previous answer, is correct considering 

the uncertainty of the height equation. (And this solution is found in just 

under half the time of the earlier solution.) 

Interpreting Results 

The numbers that _ places in the X-, Y-, and Z-registers help you 

evaluate the results of the search for a root of your equation.
*
 Even when no 

root is found, the results are still significant. 

When _ finds a root of the specified 

equation, the root and function values are 

placed in the X- and Z-registers. A function 

value of zero is the expected result. 

However, a nonzero function value is also 

acceptable because it indicates that the 

function's graph apparently crosses the x-

axis within an infinitesimal distance from 

the calculated root. In most such cases, the 

function value will be relatively close to 

zero. 

                                                           
* The number in the T-register is the same number that was left in the Y-register by the final execution of 

your function subroutine. Generally, this number is not of interest. 
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Special consideration is required for a different 

type of situation in which _ finds a root 

with a nonzero function value. If your 

function's graph has a discontinuity that 

crosses the x-axis, _ specifies as a root 

an x-value adjacent to the discontinuity. This is 

reasonable because a large change in the 

function value between two adjacent values of 

x might be the result of a very rapid, 

continuous transition. Because this cannot be 

resolved by the algorithm, the root is displayed 

for you to interpret. 

A function may have a pole, where its 

magnitude approaches infinity. If the function 

value changes sign at a pole, the corresponding 

value of x looks like a possible root of your 

equation, just as it would for any other 

discontinuity crossing the x-axis. However, for 

such functions, the function value placed into 

the Z-register when that root is found will be 

relatively large. If the pole occurs at a value of 

x that is exactly represented with 10 digits, the 

subroutine may try that value and halt prematurely with an error indication. 

In this case, the _ operation will not be completed. Of course, this 

may be avoided by the prudent use of a conditional statement in your 

subroutine. 

Example: In her analysis of the stresses in a 

structural component, design consultant Lucy 

I. Beame has determined that the shear stress 

can be expressed as 












1410for1000

100for350453
Q

23

x

xxx
 

where Q is the shear stress in newtons per 

square meter and x is the distance from one end in meters. Write a 

subroutine to compute the shear stress for any value of x. Use _ to 

find the location of zero shear stress. 
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Solution: The equation for the shear stress for x between 0 and 10 is more 

efficiently programmed after rewriting it using Horner's method: 

Q = (3x–45)x
2
 + 350 for 0 < x < 10. 

Keystrokes Display  

| ¥ 000– Program mode. 

´ b 2 001–42,21, 2  

1 002–       1 

Test for x range. 0 003–       0 

|£ 004–   43 10 

t 9 005–   22  9 Branch for x ≥ 10. 

| ` 006–   43 35  

3 007–       3  

* 008–      20 3x. 

4 009–       4  

5 010–       5  

- 011–      30 (3x – 45). 

* 012–      20  

* 013–      20 (3x – 45)x
2
. 

3 014–       3  

5 015–       5  

0 016–       0  

+ 017–      40 (3x – 45)x 
2
 + 350. 

| n 013–   43 32 End subroutine. 

´ b 9 019–42,21, 9 Subroutine for x ≥ 10. 

‛ 020–      26  

3 021–       3 10
3
=1000. 

| n 022–   43 32 End subroutine. 

Execute _ using initial estimates of 7 and 14 to start at the outer end 

of the beam and search for a point of zero shear stress. 
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Keystrokes Display 

| ¥   Run mode. 

7 v 7.0000  
Initial estimates. 

14 14  

´_ 2 10.0000  Possible root. 

))  1,000.0000  Stress not zero. 

The large stress value at the root points out that the _ routine has 

found a discontinuity. This is a place on the beam where the stress quickly 

changes from negative to positive. Start at the other end of the beam 

(estimates of 0 and 7) and use _ again. 

Keystrokes Display   

0 v 0.0000  
Initial estimates. 

7 7 

´ _ 2 3.1358  Possible root. 

)) 2.0000 -07 Negligible stress. 

Beame's beam has zero shear stress at 

approximately 3.1358 meters and an 

abrupt change of stress at 10.0000 meters. 

 

 

 

 

 

When no root is found and Error 8 is displayed, you can press − or any 

one key to clear the display and observe the estimate at which the function 

was closest to zero. By also reviewing the numbers in the Y- and Z-

registers, you can often determine the nature of the function near the root 

estimate and use this information constructively. 
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If the algorithm terminates its search near a 

local minimum of the function's magnitude, 

clear the Error 8 display and observe the 

numbers in the X-, Y-, and Z-registers by 

rolling down the stack. If the value of the 

function saved in the Z-register is relatively 

close to zero, it is possible that a root of 

your equation has been found – the number 

returned in the X-register may be a 10-digit 

number very close to a theoretical root. You 

can explore this potential minimum further by rolling the stack until the 

returned estimates are back in the X- and Y-registers and then executing 

_ again using these numbers as initial estimates. If an actual 

minimum has been found, Error 8 will again be displayed and the number 

in the X-register will be approximately the same as before, but possibly 

closer to the actual location of the minimum. 

Of course, you may deliberately use _ to find the location of a local 

minimum of the function's magnitude. However, in this case you must be 

careful to confine the search in the region of the minimum. Remember, 

_ tries hard to find a zero of the function. 

If the algorithm stops searching and 

displays Error 8 because it is working on a 

horizontal asymptote (when the value of 

the function is essentially constant for a 

large range of x), the estimates in X- and 

Y-registers usually are significantly 

different from each other. The number in 

the Z-register is the value of the potential 

asymptote. If you execute _ again 

using as initial estimates the numbers that 

were returned in the X- and Y-registers, a 

horizontal asymptote may again cause Error 8, but with numbers in the X- 

and Y-registers that will differ from the previous numbers. The value of the 

function in the Z-register would then be about the same as that obtained 

previously. 
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If Error 8 is displayed as a result of a search that 

is concentrated in a local ―flat‖ region of the 

function, the estimates in the X- and Y-registers 

will be relatively close together or extremely 

small. Execute _ again using for initial 

estimates the numbers from the X- and Y-

registers (or perhaps two numbers somewhat 

further apart). If the magnitude of the function is 

neither a minimum nor constant, the algorithm 

will eventually expand its search and find a 

more significant result.  

Example: Investigate the behavior of the function 

x
exx

eexf



 2

23)(
10/

 

as evaluated in the following subroutine. 

Keystrokes Display  

|¥ 000– Program mode. 

´ b .0 001–42,21,.0  

| a 002–   43 16  

“  003–      16 x
e


. 

' 004–      12  

® 005–      34 Bring x-value into X-register. 

| x 006–   43 11 
x

ex
2 . 

* 007–      20  

' 008–      12  

2 009–       2  

* 010–      20 
x

exe



2

2 . 

“  011–      16  

® 012–      34 Bring x-value into X-register. 

| a 013–   43 16  

“  014–      16  

1 015–       1  

0 016–       0  
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Keystrokes Display  

÷ 017–      10 .10/x  

' 018–      12  

+ 019–      40 
x

ex
e

x
e




 2

2
10/

. 

3 020–       3  

+  021–      40 
x

ex
e

x
e







2

2
10/

3 . 

|n 022–   43 32  

Use _ with the following single initial estimates: 10, 1, and 10
-20

. 

Keystrokes Display  

|¥  Run mode. 

10 v 10.0000 Single estimate. 

´ _ .0 Error 8  

− 455.335 Best x-value. 

)  48,026,721.85 Previous value. 

) 1.0000 Function value. 

| (| ( 455.4335 Restore the stack. 

´ _.0 Error 8  

− 48,026,721.85 Another x-value 

)) 1.0000 Same function value 

(an asymptote). 

1 v 1.0000 Single estimate. 

´ _.0 Error 8  

− 2.1213 Best x-value. 

)  2.1471 Previous value. 

) 0.3788 Function value. 

| (| (   2.1213 Restore the stack. 

´ _.0 Error 8  

−  2.1213 Same x-value. 

) )  0.3788 Same function value 

(a minimum). 

‛ “ 20 
v 

1.0000    –20 Single estimate. 
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Keystrokes Display  

´ _.0 Error 8  

− 1.0000    –20 Best x-value. 

)  1.1250    –20 Previous value. 

) 2.0000 Function value. 

| (| (   1.0000    –20 Restore the stack. 

´ _ .0 Error 8  

− 1.1250    –20 Another x-value. 

)  1.5626    –16 Previous value. 

)  2.0000 Same function value. 

In each of the three cases, _ initially 

searched for a root in a direction suggested by 

the graph around the initial estimate. Using 

10 as the initial estimate, _ found the 

horizontal asymptote (value of 1.0000). 

Using 1 as the initial estimate, a minimum of 

0.3788 at x = 2.1213 was found. Using 10
–20

 

as the initial estimate, the function was 

essentially constant (at a value of 2.0000) for 

the small range of x that was sampled. 

Finding Several Roots 

Many equations that you encounter have more than one root. For this 

reason, you will find it helpful to understand some techniques for finding 

several roots of an equation. 

The simplest method for finding several roots is to direct the root search in 

different ranges of x where roots may exist. Your initial estimates specify 

the range that is initially searched. This method was used for all examples 

in section 13. You can often find the roots of an equation in this manner. 

Another method is known as deflation. Deflation is a method by which roots are 

"eliminated" from an equation. This involves modifying the equation so that the 

first roots found are no longer roots, but the rest of the roots remain roots. 

If a function f(x) has a value of zero at x = a, then the new function      

f(x)/(x – a) will not approach zero in this region (if a is a simple root of 

f(x) = 0). You can use this information to eliminate a known root. Simply 
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add a few program lines at the end of your function subroutine. These lines 

should subtract the known root (to 10 significant digits) from the x-value 

and divide this difference into the function value. In many cases the root 

will be a simple one, and the new function will direct _ away from 

the known root. On the other hand, the root may be a multiple root. A 

multiple root is one that appears to be present repeatedly, in the following 

sense: at such a root, not only does the graph of f(x) cross the x-axis, but its 

slope (and perhaps the next few higher-order derivatives) also equals zero. 

If the known root of your equation is a multiple root, the root is not 

eliminated by merely dividing by the factor described above. For example, 

the equation 

f(x) = x(x – a)
3
 = 0 

has a multiple root at x = a (with a multiplicity of 3). This root is not 

eliminated by dividing f(x) by (x – a). But it can be eliminated by dividing 

by (x – a)
3
. 

Example: Use deflation to help find the roots of 

60x
4
 – 944x

3
 + 3003x

2 
+ 6171x – 2890 = 0. 

Using Horner's method, this equation can be rewritten in the form 

(((60x – 944)x + 3003)x + 6171)x – 2890 = 0. 

Program a subroutine that evaluates the polynomial. 

Keystrokes Display  

|¥ 000- Program mode. 

´ CLEAR 
M 

000-  

´b2 001-42,21, 2  

6 002–       6  

0 003–       0  

* 004–      20  

9 005–       9  

4 006–       4  

4 007–       4  
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Keystrokes Display  

- 008–      30  

* 009–      20  

3 010–       3  

0 011–       0  

0 012–       0 

3 013–       3 

+ 014–      40 

* 015–      20 

6 016–       6 

1 017–       1 

7 018–       7 

1 019–       1 

+ 020–      40 

*  021–      20 

2 022–       2 

8 023–       8 

9 024–       9 

0 025–       0 

- 026–      30 

|n 027–   43 32 

In Run mode, key in two large, negative initial estimates (such as -10 and  

-20) and use _ to find the most negative root. 

Keystrokes Display  

|¥  Run mode. 

10 “ v –10.0000 
Initial estimates. 

20 “ –20 

´ _ 2 –1.6667 First root. 

O 0 –1.6667 Stores root for deflation. 

) )  4.0000  –06 Function value near zero. 
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Return to Program mode and add instructions to your subroutine to 

eliminate the root just found. 

Keystrokes Display   

|¥ 000-  Program mode. 

| ‚ | 

‚ 

026– 30  Line before n. 

® 027– 34  Brings x into X-register. 

l 0 028– 45  0  
Divides by (x – a), where 

a is known root. 
- 029– 30 

÷ 030– 10 

Now use the same initial estimates to find the next root. 

Keystrokes Display   

|¥  4.0000 -06  Run mode. 

10 “ v –10.0000  
Same initial estimates. 

20 “ –20 

´ _ 2  0.4000  Second root. 

O 1  0.4000  Stores root for deflation. 

) )  0.0000  Deflated function value. 

Now modify your subroutine to eliminate the second root. 

Keystrokes Display  

|¥ 000- Program mode. 

| ‚ | 

‚ 

030–     10 Line before n. 

® 031–     34 Brings x into X-register. 

l 1 032–  45  1  

- 033–     30 Deflation for second root. 

÷ 034–     10  
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Again, use the same initial estimates to find the next root. 

Keystrokes Display  

|¥  0.0000 Run mode. 

10 “ v –10.0000 
Same initial estimates. 

20 “ –20 

´ _ 2  8.4999 Third root. 

O 2  8.4999 Stores root for deflation. 

) ) –1.0929  –07 Deflated function value near 

zero. 

Now change your subroutine to eliminate the third root. 

Keystrokes Display   

|¥ 000–  Program mode. 

| ‚ | 

‚ 

034– 10 Line before n. 

® 035– 34 Brings x into X-register. 

l 2 036- 45  2  

- 037– 30 Deflation for third root. 

÷ 038– 10  

Find the fourth root. 

Keystrokes Display   

|¥ –1.0929  –07   

10 “ v –10.0000  
Same initial estimates. 

20 “ –20 

´ _ 2  8.5001  Fourth root. 

O 3  8.5001  Stores root for reference. 

) ) –0.0009  Deflated function value 

near zero. 
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Using the same initial estimates each 

time, you have found four roots for this 

equation involving a fourth-degree 

polynomial. However, the last two 

roots are quite close to each other and 

are actually one root (with a 

multiplicity of 2). That is why the root 

was not eliminated when you tried 

deflation once at this root. (Round-off 

error causes the original function to 

have small positive and negative values 

for values of x between 8.4999 and 

8.5001; for x = 8.5 the function is 

exactly zero.)  

In general, you will not know in advance the multiplicity of the root you are 

trying to eliminate. If, after you have attempted to eliminate a root, _ 

finds that same root again, you can proceed in a number of ways: 

 Use different initial estimates with the deflated function in an 

attempt to search for a different root. 

 Use deflation again in an attempt to eliminate a multiple root. If 

you do not know the multiplicity of the root, you may need to 

repeat this a number of times. 

 Examine the behavior of the deflated function at x-values near the 

known root. If the function's calculated values cross the x-axis 

smoothly, either another root or a greater multiplicity is indicated. 

 Analyze the original function and its derivatives algebraically. It 

may be possible to determine its behavior for x-values near the 

known root. (A Taylor series representation, for example, may 

indicate the multiplicity of a root.) 

Limiting the Estimation Time 

Occasionally, you may desire to limit the time used by _ to find a 

root. You can use two possible techniques to do this – counting iterations 

and specifying a tolerance. 
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Counting Iterations 

While searching for a root, _ typically samples your function at least 

a dozen times. Occasionally, _ may need to sample it one hundred 

times or more. (However, _ will always stop by itself.) Because your 

function subroutine is executed once for each estimate that is tried, it can 

count and limit the number of iterations. An easy way to do this is with an 

I instruction to accumulate the number of iterations in the Index 

register (or other storage register). 

If you store an appropriate number in the register before using _, your 

subroutine can interrupt the _ algorithm when the limit is exceeded. 

Specifying a Tolerance 

You can shorten the time required to find a root by specifying a tolerable 

inaccuracy for your function. Your subroutine should return a function 

value of zero if the calculated function value is less than the specified 

tolerance. This tolerance that you specify should correspond to a value that 

is negligible for practical purposes or should correspond to the accuracy of 

the computation. This technique eliminates the time required to define the 

estimate more accurately than is justify by the problem. The example on 

page 224 uses this method.) 

For Advanced Information 

In the HP-15C Advanced Functions Handbook, additional, advanced 

techniques and applications for using _ are presented. These topics 

include: 

 Using _ with polynomials. 

 Solving a system of equations. 

 Finding local extremes of a function. 

 Using _ for financial problems. 

 Using _ in Complex mode. 

 Solving an equation for its complex roots. 
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Appendix E 

A Detailed Look at f 

Section 14, Numerical Integration, presented the basic information you need 

to use f This appendix discusses more intricate aspects of f that are 

of interest if you use f often. 

How f Works 

The f algorithm calculates the integral of a function f(x) by computing a 

weighted average of the function's values at many values of x (known as 

sample points) within the interval of integration. The accuracy of the result 

of any such sampling process depends on the number of sample points 

considered: generally, the more sample points, the greater the accuracy. If 

f(x) could be evaluated at an infinite number of sample points, the algorithm 

could – neglecting the limitation imposed by the inaccuracy in the 

calculated function f(x) – provide an exact answer. 

Evaluating the function at an infinite number of sample points would take a 

very long time (namely, forever). However, this is not necessary, since the 

maximum accuracy of the calculated integral is limited by the accuracy of 

the calculated function values. Using only a finite number of sample points, 

the algorithm can calculate an integral that is as accurate as is justified 

considering the inherent uncertainty in f(x). 

The f algorithm at first considers only a few sample points, yielding 

relatively inaccurate approximations. If these approximations are not yet as 

accurate as the accuracy of f(x) would permit, the algorithm is iterated (that 

is, repeated) with a larger number of sample points. These iterations 

continue, using about twice as many sample points each time, until the 

resulting approximation is as accurate as is justified considering the 

inherent uncertainty in f(x). 
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The uncertainty of the final approximation is a number derived from the 

display format, which specifies the uncertainty for the function.
*
 At the end 

of each iteration, the algorithm compares the approximation calculated 

during that iteration with the approximations calculated during two previous 

iterations. If the difference between any of these three approximations and 

the other two is less than the uncertainty tolerable in the final 

approximation, the algorithm terminates, placing the current approximation 

in the X-register and its uncertainty in the Y-register. 

It is extremely unlikely that the errors in each of three successive 

approximations – that is, the differences between the actual integral and the 

approximations – would all be larger than the disparity among the 

approximations themselves. Consequently, the error in the final 

approximation will be less than its uncertainty.
†
 Although we can't know the 

error in the final approximation, the error is extremely unlikely to exceed 

the displayed uncertainty of the approximation. In other words, the 

uncertainty estimate in the Y-register is an almost certain ―upper bound‖ on 

the difference between the approximation and the actual integral. 

Accuracy, Uncertainty, and Calculation Time 

The accuracy of an f approximation does not always change when you 

increase by just one the number of digits specified in the display format, 

though the uncertainty will decrease. Similarly, the time required to 

calculate an integral sometimes changes when you change the display 

format, but sometimes does not. 

Example: The Bessel function of the first kind, of order four, can be 

expressed as 

  
π

dθθxθxJ
04 sin4cos

1
)(


 

                                                           
* The relationship between the display format, the uncertainly in the function, and the uncertainty in the 

approximation to its integral are discussed later in this appendix. 

† Provided that f(x) does not vary rapidly, a consideration that will be discussed in more detail later in this 

appendix. 
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Calculate the integral in the expression for J4 (1), 

 



0

)sin4cos( d  

First, switch to Program mode and key in a subroutine that evaluates the 

function f(θ) = cos (4θ – sin θ). 

Keystrokes Display  

|¥  000- Program mode. 

´ CLEAR  M  000-  

´ b 0 001–42,21,  0  

4 002–        4  

* 003–       20  

® 004–       34  

[ 005–       23  

- 006–       30  

\ 007–       24  

|n  008–    43 32  

Now, switch to Run mode and key the limits of integration into the X- and 

Y-registers. Be sure the trigonometric mode is set to Radians, and set the 

display format to i 2. Finally, press ´ f0 to calculate the integral. 

Keystrokes Display  

|¥  Run mode. 

0 v  0.0000 Keys lower limit into Y-register. 

| $  3.1416 Keys upper limit into X-register. 

| R  3.1416 Sets the trigonometric mode to 

Radians. 

´ i 2 3.14   00 Sets display format to i 2. 

´ f 0 7.79  -03 Integral approximated in i 2. 

® 1.45  -03 Uncertainty of i 2 

approximation. 
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The uncertainty indicates that the displayed digits of the approximation 

might not include any digits that could be considered accurate. Actually, 

this approximation is more accurate than its uncertainty indicates. 

Keystrokes Display  

® 7.79   -03 Return approximation to 

display. 

´ CLEAR u    

(hold) 7785820888 All 10 digits of i 2  

approximation. 

The actual value of this integral, correct to five significant digits, is 

7.7805×10
-3

. Therefore, the error in this approximation is about  

(7.7858  7.7805)×10
-3

 = 5.3×10
-6

. This error is considerably less than the 

uncertainty, 1.45×10
-3

 The uncertainty is only an upper bound on the error 

in the approximation; the actual error will generally be smaller. 

Now calculate the integral in i 3 and compare the accuracy of the 

resulting approximation to that of the i 2 approximation. 

Keystrokes Display  

´ i 3 7.786   –03 Changes display format  

to i 3. 

) )  3.142    00 Rolls down stack until 

upper limit appears in X-

register. 

´ f 0 7.786   –03 Integral approximated in  

i 3 

® 1.448   –04 Uncertainty of i 3 

approximation. 

® 7.786   –03 Returns approximation to 

display. 

´ CLEAR u   

(hold) 7785820888 All 10 digits of i 
3 approximation. 
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All 10 digits of the approximations in i 2 and i 3 are identical: the 

accuracy of the approximation in i 3 is no better than the accuracy in 

i 2 despite the fact that the uncertainty in i 3 is less than the 

uncertainty in i 2. Why is this? Remember that the accuracy of any 

approximation depends primarily on the number of sample points at which 

the function f(x) has been evaluated. The f algorithm is iterated with 

increasing numbers of sample points until the disparity among three 

successive approximations is less than the uncertainty derived from the 

display format. After a particular iteration, the disparity among the 

approximations may already be so much less than the uncertainty that it 

would still be less if the uncertainty were decreased by a factor of 10. In 

such cases, if you decreased the uncertainty by specifying one more digit in 

the display format, the algorithm would not have to consider additional 

sample points, and the resulting approximation would be identical to the 

approximation calculated with the larger uncertainty. 

If you calculated the two preceding approximations on your calculator, you 

may have noticed that it did not take any longer to calculate the integral in 

i 3 than in i 2. This is because the time to calculate the integral of 

a given function depends on the number of sample points at which the 

function must be evaluated to achieve an approximation of acceptable 

accuracy. For the i 3 approximation, the algorithm did not have to 

consider more sample points than it did in i 2, so it did not take any 

longer to calculate the integral. 

Often, however, increasing the number of digits in the display format will 

require evaluating the function at additional sample points, so that 

calculating the integral will take more time. Now calculate the same integral 

in i 4. 

Keystrokes Display  

´ i 4 7.7858    –03 i 4 display. 

) )  3.1416     00 Rolls down stack until upper 

limit appears in X-register. 

´ f 0 7.7807    –03 Integral approximated in i 4. 
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This approximation took about twice as long as the approximation in i 

3 or i 2. In this case, the algorithm had to evaluate the function at 

about twice as many sample points as before in order to achieve an 

approximation of acceptable accuracy. Note, however, that you received a 

reward for your patience: the accuracy of this approximation is better, by 

almost two digits, than the accuracy of the approximation calculated using 

half the number of sample points. 

The preceding examples show that repeating the approximation of an 

integral in a different display format sometimes will give you a more 

accurate answer, but sometimes it will not. Whether or not the accuracy is 

changed depends on the particular function, and generally can be 

determined only by trying it. 

Furthermore, if you do get a more accurate answer, it will come at the cost 

of about double the calculation time. This unavoidable trade-off between 

accuracy and calculation time is important to keep in mind if you are 

considering decreasing the uncertainty in hopes of obtaining a more 

accurate answer. 

The time required to calculate the integral of a given function depends not 

only on the number of digits specified in the display format, but also, to a 

certain extent on the limits of integration. When the calculation of an 

integral requires an excessive amount of time, the width of the interval of 

integration (that is, the difference of the limits) may be too large compared 

with certain features of the function being integrated. For most problems, 

however, you need not be concerned about the effects of the limits of 

integration on the calculation time. These conditions, as well as techniques 

for dealing with such situations, will be discussed later in this appendix. 

Uncertainty and the Display Format 

Because of round-off error, the subroutine you write for evaluating f(x) 

cannot calculate f(x) exactly, but rather calculates 

),()()(ˆ 1 xxfxf   

where δ1 (x) is the uncertainty of f(x) caused by round-off error. If f(x) 

relates to a physical situation, then the function you would like to integrate 

is not f(x) but rather 
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)(δ)()( 2 xxfxF  , 

where δ2(x) is the uncertainty associated with f(x) that is caused by the 

approximation to the actual physical situation. 

Since )(δ)(ˆ)( 1 xxfxf  , the function you want to integrate is 

)(δ)(δ)(ˆ)( 21 xxxfxF   

or )(δ)(ˆ)( xxfxF  , 

where δ(x) is the net uncertainty associated with f(x). 

Therefore, the integral you want is 

dxxxfdxxF
b

a

b

a
)](δ)(ˆ[)(    

 
b

a

b

a
dxxdxxf )()(ˆ   

 I  

where I is the approximation to 
b

a
dxxF  )(  and ∆ is the uncertainty 

associated with the approximation. The f algorithm places the number I 

in the X-register and the number ∆ in the Y-register. 

The uncertainty δ(x) of )(ˆ xf , the function calculated by your subroutine, is 

determined as follows. Suppose you consider three significant digits of the 

function's values to be accurate, so you set the display format to i 2. 

The display would then show only the accurate digits in the mantissa of a 

function's values: for example, 1.23      –04. 

Since the display format rounds the number in the X-register to the 

number displayed, this implies that the uncertainty in the function's values 

is ± 0.005×10
–4

 = ± 0.5×10
–2

×10
–4

 = ± 0.5×10
-6

. Thus, setting the display
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format to i n or ^ n, where n is an integer,
*
 implies that the 

uncertainty in the function’s values is 

)(10100.5)δ( xmnx  

 

)(100.5 xmn  

In this formula, n is the number of digits specified in the display format and 

m(x) is the exponent of the function's value at x that would appear if the 

value were displayed in i display format. 

The uncertainty is proportional to the factor 10
m(x)

, which represents the 

magnitude of the function's value at x. Therefore, i and ^ display 

formats imply an uncertainty in the function that is relative to the function's 

magnitude. 

Similarly, if a function value is display in • n, the rounding of the 

display implies that the uncertainty in the function's values is 

.100.5)δ( nx   

Since this uncertainty is independent of the function's magnitude, • 

display format implies an uncertainty that is absolute. 

Each time the f algorithm samples the function at a value of x, it also 

derives a sample of δ(x), the uncertainty of the function's value at x. This is 

calculated using the number of digits n currently specified in the display 

format and (if the display format is set to i or ^) the magnitude 

m(x) of the function's value at x. The number Δ, the uncertainty of the 

approximation to the desired integral, is the integral δ (x): 

 

 

                                                           
* Although i 8 or 9 generally results in the same display as i 7, it will result in a smaller 

uncertainty of a calculated integral. (The same is true for the ^ format.) A negative value for n (which 

can be set by using the Index register) will also affect the uncertainty of an f calculation. The minimum 

value for n that will affect uncertainty is -6. A number in RI less than -6 will be interpreted as -6. 
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
b

a
dxx  )δ( Δ  

dx
b

a

xmn  ]10[0.5 )(


 . 

This integral is calculated using the samples of δ(x) in roughly the same 

ways that the approximation to the integral of the function is calculated 

using the samples of )(ˆ xf . 

Because Δ is proportional to the factor 10
-n

, the uncertainty of an 

approximation changes by about a factor of 10 for each digit specified in the 

display format. This will generally not be exact in i or ^ display 

format, however, because changing the number of digits specified may 

require that the function be evaluated at different sample points, so that 

δ(x) ~ 10
m(x)

 would have different values. 

Note that when an integral is approximated in • display format, m(x) = 

0 and so the calculated uncertainty in the approximation turns out to be 

Δ = 0.5×10
-n 

(b – a). 

Normally you do not have to determine precisely the uncertainty in the 

function. (To do so would frequently require a very complicated analysis.) 

Generally, it's more convenient to use i or ^ display format if the 

uncertainty in the function's values can be more easily estimated as a 

relative uncertainty. On the other hand, it’s more convenient to use • 

display format if the uncertainty in the function’s values can be more easily 

estimated as an absolute uncertainly. • display format may be 

inappropriate to use (leading to peculiar results) when you are integrating a 

function whose magnitude and uncertainty have extremely small values 

within the interval of integration. Likewise, i display format may be 

inappropriate to use (also leading to peculiar results) if the magnitude of the 

function becomes much smaller than its uncertainty. If the results of 

calculating an integral seem strange, It may be more appropriate to calculate 

the integral in the alternate display format. 
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Conditions That Could Cause Incorrect Results 

Although the f algorithm in the HP-15C is one of the best available, in 

certain situations it – like nearly all algorithms for numerical integration – 

might give you an incorrect answer. The possibility of this occurring is 

extremely remote. The f algorithm has been designed to give accurate 

results with almost any smooth function. Only for functions that exhibit 

extremely erratic behavior is there any substantial risk of obtaining an 

inaccurate answer. Such functions rarely occur in problems related to actual 

physical situations; when they do, they usually can be recognized and dealt 

with in a straightforward manner. 

As discussed on page 240, the f algorithm samples the function f(x) at 

various values of x within the interval of integration. By calculating a 

weighted average of the function's values at the sample points, the 

algorithm approximates the integral of f(x). 

Unfortunately, since all that the algorithm knows about f(x) are its values at 

the sample points, it cannot distinguish between f(x) and any other function 

that agrees with f(x) at all the sample points. This situation is depicted in the 

illustration on the next page, which shows (over a portion of the interval of 

integration) three of the infinitely many functions whose graphs include the 

finitely many sample points. 
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With this number of sample points, the algorithm will calculate the same 

approximation for the integral of any of the functions shown. The actual 

integrals of the functions shown with solid lines are about the same, so the 

approximation will be fairly accurate if f(x) is one of these functions. 

However, the actual integral of the function shown with a dashed line is 

quite different from those of the others, so the current approximation will be 

rather inaccurate if f(x) is this function. 

The f algorithm comes to know the general behavior of the function by 

sampling the function at more and more points. If a fluctuation of the 

function in one region is not unlike the behavior over the rest of the interval 

of integration, at some iteration the algorithm will likely detect the 

fluctuation. When this happens, the number of sample points is increased 

until successive iterations yield approximations that take into account the 

presence of the most rapid, but characteristic, fluctuations. 

For example, consider the approximation of 






0
.dxxxe  
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Since you’re evaluating this integral numerically, you might think (naively 

in this case, as you'll see) that you should represent the upper limit of 

integration by 10
99

 – which is virtually the largest number you can key into 

the calculator. Try it and see what happens. 

Key in a subroutine that evaluates the function f(x) = xe
-x

 

Keystrokes Display  

|¥  000- Program mode. 

´ b 1 001-42,21,  1  

“  002-    1   6  

' 003-       12  

* 004-       20  

| n 005-   43  32  

Set the calculator to Run mode. Then set the display format to i 3 and 

key the limits of integration into the X- and Y-registers. 

Keystrokes Display  

|¥  Run mode. 

´i 3  Sets display format to i 3. 

0 v 0.000  00 Keys lower limit into Y-

register. 

‛ 99 1      99 Keys upper limit into X-

register. 

´ f 1 0.000  00 Approximation of integral. 

The answer returned by the calculator is clearly incorrect, since the actual 

integral of f(x) = xe
-x

 from 0 to  is exactly 1. But the problem is not that 

you represented  by 10
99

 since the actual integral of this function from 0 to 

10
99

 is very close to 1. The reason you got an incorrect answer becomes 

apparent if you look at the graph of f(x) over the interval of integration: 
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The graph is a spike very close to the origin. (Actually, to illustrate f(x) the 

width of the spike has been considerably exaggerated. Shown in actual scale 

over the interval of integration, the spike would be indistinguishable from 

the vertical axis of the graph.) Because no sample point happened to 

discover the spike, the algorithm assumed that f(x) was identically equal to 

zero throughout the interval of integration. Even if you increased the 

number of sample points by calculating the integral in i 9, none of the 

additional sample points would discover the spike when this particular 

function is integrated over this particular interval. (Better approaches to 

problems such as this are mentioned at the end of the next topic, Conditions 

That Prolong Calculation Time.) 

You've seen how the f algorithm can give you an incorrect answer when 

f(x) has a fluctuation somewhere that is very uncharacteristic of the 

behavior of the function elsewhere. Fortunately, functions exhibiting such 

aberrations are unusual enough that you are unlikely to have to integrate 

one unknowingly. 

Functions that could lead to incorrect results can be identified in simple 

terms by how rapidly it and its low-order derivatives vary across the 

interval of integration. Basically, the more rapid the variation in the 

function or its derivatives, and the lower the order of such rapidly varying 

derivatives, the less quickly will the f algorithm terminate, and the less 

reliable will the resulting approximation be. 
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Note that the rapidity of variation in the function (or its low-order 

derivatives) must be determined with respect to the width of the interval of 

integration. With a given number of sample points, a function f(x) that has 

three fluctuations can be better characterized by its samples when these 

variations are spread out over most of the interval of integration than if they 

are confined to only a small fraction of the interval. (These two situations 

are shown in the next two illustrations.) Considering the variations or 

fluctuations as a type of oscillation in the function, the criterion of interest 

is the ratio of the period of the oscillations to the width of the interval of 

integration: the larger this ratio, the more quickly the algorithm will 

terminate, and the more reliable will be the resulting approximation. 
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In many cases you will be familiar enough with the function you want to 

integrate that you’ll know whether the function has any quick wiggles 

relative to the interval of integration. If you're not familiar with the 

function, and you have reason to suspect that it may cause problems, you 

can quickly plot a few points by evaluating the function using the 

subroutine you wrote for that purpose. 

If for any reason, after obtaining an approximation to an integral, you have 

reason to suspect its validity, there's a very simple procedure you can use to 

verify it: subdivide the interval of integration into two or more adjacent 

subintervals, integrate the function over each subinterval, then add the 

resulting approximations. This causes the function to be sampled at a brand 

new set of sample points, thereby more likely revealing any previously 

hidden spikes. If the initial approximation was valid, it will equal the sum of 

the approximations over the subintervals. 

Conditions That Prolong Calculation Time 

In the preceding example (page 251), you saw that the algorithm gave an 

incorrect answer because it never detected the spike in the function. This 

happened because the variation in the function was too quick relative to the 

width of the interval of integration. If the width of the interval were smaller, 

you would get the correct answer; but it would take a very long time if the 

interval were still too wide. 

For certain integrals such as the one in that example, calculating the integral 

may be unduly prolonged because the width of the interval of integration is 

too large relative to certain features of the functions being integrated. 

Consider an integral where the interval of integration is wide enough to 

require excessive calculation time but not so wide that it would be 

calculated incorrectly. Note that because f(x) = xe
-x

 approaches zero very 

quickly as x approaches , the contribution to the integral of the function at 

large values of x is negligible. Therefore, you can evaluate the integral by 

replacing , the upper limit of integration, by a number not so large as 10
99

, 

say 10
3
. 
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Keystrokes Display  

0 v  0.000    00 Keys lower limit into  

Y-register. 

‛ 3 1        03 Keys upper limit into  

X-register. 

´ f 1 1.000    00 Approximation to integral. 

®  1.824   -04 Uncertainty of 

approximation. 

This is the correct answer, but it took almost 60 seconds. To understand 

why, compare the graph of the function over the interval of integration, 

which looks about identical to that shown on page 252, to the graph of the 

function between x = 0 and x = 10. 

By comparing the two graphs, you can see that the function is "interesting" 

only at small values of x. At greater values of x, the function is 

"uninteresting," since it decreases smoothly and gradually in a very 

predictable manner. 

As discussed earlier, the f algorithm will sample the function with 

higher densities of sample points until the disparity between successive 

approximations becomes sufficiently small. In other words, the algorithm 

samples the function at increasing numbers of sample points until it has 

sufficient information about the function to provide an approximation that 

changes insignificantly when further samples are considered. 



256 Appendix E: A Detailed Look at f 

 

If the interval of integration were (0, 10) so that the algorithm needed to 

sample the function only at values where it was interesting but relatively 

smooth, the sample points after the first few iterations would contribute no 

new information about the behavior of the function. Therefore, only a few 

iterations would be necessary before the disparity between successive 

approximations became sufficiently small that the algorithm could 

terminate with an approximation of a given accuracy. 

On the other hand, if the interval of integration were more like the one 

shown in the graph on page 252, most of the sample points would capture 

the function in the region where its slope is not varying much. The few 

sample points at small values of x would find that values of the function 

changed appreciably from one iteration to the next. Consequently the 

function would have to be evaluated at additional sample points before the 

disparity between successive approximations would become sufficiently 

small. 

In order for the integral to be approximated with the same accuracy over 

the larger interval as over the smaller interval, the density of the sample 

points must be the same in the region where the function is interesting. To 

achieve the same density of sample points, the total number of sample 

points required over the larger interval is much greater than the number 

required over the smaller interval. Consequently, several more iterations are 

required over the larger interval to achieve an approximation with the same 

accuracy, and therefore calculating the integral requires considerably more 

time. 

Because the calculation time depends on how soon a certain density of 

sample points is achieved in the region where the function is interesting, the 

calculation of the integral of any function will be prolonged if the interval 

of integration includes mostly regions where the function is not interesting. 

Fortunately, if you must calculate such an integral, you can modify the 

problem so that the calculation time is considerably reduced. Two such 

techniques are subdividing the interval of integration and transformation of 

variables. These methods enable you to change the function or the limits of 

integration so that the integrand is better behaved over the interval(s) of 

integration. (These techniques are described in the HP-15C Advanced 

Functions Handbook.) 
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Obtaining the Current Approximation  

to an Integral 

When the calculation of an integral is requiring more time than you care to 

wait, you may want to stop and display the current approximation. You can 

obtain the current approximation, but not its uncertainty. 

Pressing ¦ while the HP-15C is calculating an integral halts the 

calculation, just as it halts the execution of a running program. When you 

do so, the calculator stops at the current program line in the subroutine you 

wrote for evaluating the function, and displays the result of executing the 

preceding program line. Note that after you halt the calculation, the current 

approximation to the integral is not the number in the X-register nor the 

number in any other stack register. Just as with any program, pressing 

¦ again starts the calculation from the program line at which it was 

stopped. 

The f algorithm updates the current approximation and stores it in the 

LAST X register after evaluating the function at each new sample point. To 

obtain the current approximation, therefore, simply halt the calculator, 

single-step if necessary through your function subroutine until the calculator 

has finished evaluating the function and updating the current 

approximation. Then recall the contents of the LAST X register, which are 

updated when the n instruction in the function subroutine is executed. 

While the calculator is updating the current approximation, the display is 

blank and does not show running. (While the calculator is executing your 

function subroutine, running is displayed.) Therefore, you might avoid 

having to single-step through your subroutine by halting the calculator at a 

moment when the display is blank. 

In summary, to obtain the current approximation to an integral, follow the 

steps below. 

1. Press ¦ to halt the calculator, preferably while the display is 

blank. 

2. When the calculator halts, switch to Program mode to check the 

current program line. 

 If that line contains the subroutine label, return to Run 

mode and view the LAST X register (step 3). 
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 If any other program line is displayed, return to Run mode 

and single-step (Â) through the program until you 

reach a n instruction (keycode 43 32) or line 000 (if 

there is no n). (Be sure to hold the Â key down 

long enough to view the program line numbers and 

keycodes.) 

3. Press | K to view the current approximation. If you want to 

continue calculating the final approximation, press − + 

¦. This refills the stack with the current x-value and restarts 

the calculator. 
 

For Advanced Information 

The HP-15C Advanced Functions Handbook explores more esoteric aspects 

of f and its applications. These topics include: 

 Accuracy of the function to be integrated. 

 Shortening calculation time. 

 Calculating difficult integrals. 

 Using f in Complex mode. 
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Appendix F 

Batteries  

Batteries  

The HP-15C is shipped with two 3 Volt CR2032 Lithium batteries. Battery 

life depends on how the calculator is used. If the calculator is being used to 

perform operations other than running programs, it uses much less power. 

Low-Power Indication 

A battery symbol () shown in the upper-left corner of the display when 

the calculator is on signifies that the available battery power is running low. 

When the battery symbol begins flashing, replace the battery as soon as 

possible to avoid losing data. 

Use only a fresh battery. Do not use rechargeable batteries. 

Warning 

 

There is the danger of explosion if the battery is 

incorrectly replaced. Replace only with the same or 

equivalent type recommended by the manufacturer. 

Dispose of used batteries according to the manufacturer’s 

instructions. Do not mutilate, puncture, or dispose of 

batteries in fire. The batteries can burst or explode, 

releasing hazardous chemicals. Replacement battery is a 

Lithium 3V Coin Type CR2032. 

Installing New Batteries  

To prevent memory loss, never remove two old batteries at the same time. 

Be sure to remove and replace the batteries one at a time. 
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To install new batteries, use the following procedure:  

 
 

1. With the calculator turned off, slide the battery cover off. 

2. Remove the old battery.  

3. Insert a new CR2032 lithium battery, making sure that the positive 

sign (+) is facing outward. 

4. Remove and insert the other battery as in steps 2 through 3. Make sure 

that the positive sign (+) on each battery is facing outward. 

5. Replace the battery cover. 

Note: Be careful not to press any keys while the battery is 

out of the calculator. If you do so, the contents of Continuous 

Memory may be lost and keyboard control may be lost (that 

is, the calculator may not respond to keystrokes). 

6. Press  = to turn on the power. If for any reason Continuous Memory 

has been reset (that is, if its contents have been lost), the display will 

show Pr Error. Pressing any key will clear this message. 
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Verifying Proper Operation (Self-Tests) 

If it appears that the calculator will not turn on or otherwise is not operating 

properly, use the following procedures to access the test system; 

1) Turn the calculator off. 

2) Press and HOLD the | and v keys (keep both keys held 

down for the next step). 

3) Press the = key (while both | and v keys are held down 

from Step 2 above). 

4) Release the = key. 

5) Release the | and v keys. 

You will be presented with a main test screen that displays the following: 

1.L  2.C  3.H 

 Press 1 to perform the LCD test (all LCD segments will be turned on). 

Press any key to exit 

 Press 2 to perform the checksum test and see the copyright messages. 

Press any key to go from one screen to the next until you return to the 

main test screen. 

 Press 3 to perform the keyboard test. You then need to press EVERY 

key on the keyboard until all the keys have been pressed at least once 

(the screen will progressively turn off).  You can press the keys in any 

order and any number of times. Once all the keys have been pressed 

and the screen is clear, press on any key to return to the test screen. 

Press = to exit the test system. This will also turn the calculator off.  

If the calculator detects an error at any point, it will display an error 

message. 

If you still experience difficulty, write or telephone Hewlett-Packard at an 

address or phone number listed on the web at: www.hp.com/support. 

http://www.hp.com/support
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Function Summary and Index

= Turns the 

calculator's display on 

and off (page 18). It is 

also used in resetting 

Continuous Memory 

(page 63), changing the 

digit separator (page 

61), and in various tests 

of the calculator's 

operation (pages 261). 

Complex 

Functions 

} Real exchange 

imaginary. Activates 

Complex mode 

(establishing an 

imaginary stack) and 

exchanges the real and 

imaginary X-registers 

(page 124). 

V Used to enter 

complex numbers. 

Activates Complex 

mode (establishing an 

imaginary stack) 

(page 121). Also used 

with m to indirectly  

dimension matrices 

(page 174). (For Index 

register functions, refer 

to Index Register 

Control keys, 

page 263.)% Displays 

the contents of the 

imaginary X-register 

while the key is held 

(page 124). 

F 8   Sets flag 8, 

which activates 

Complex mode 

(page 121). 

" 8   Clears flag 8, 

deactivating Complex 

mode (page 121). 

Conversions 

; Converts polar 

magnitude r and angle  

θ in X- and Y-registers 

respectively to 

rectangular x- and y-

coordinates (page 31). 

For operation in 

Complex mode, refer to 

page 134. 

: Converts x, y 

rectangular coordinates 

placed in X- and Y-

registers respectively to 

polar magnitude r and 

angle θ (page 30). For 

operation in Complex 

mode, refer to page 134. 

h Converts 

decimal hours (or 

degrees) to hours, 

minutes, seconds (or 

degrees, minutes, 

seconds) (page 27). 

À Converts hours, 

minutes, seconds (or 

degrees, minutes, 

seconds) to decimal 

hours (or degrees) (page 

27). 

r Converts 

degrees to radians  

(page 27). 

d Converts 

radians to degrees (page 

27). 

Digit Entry 

v Enters a copy 

of number in X-register 

(display) into Y-register; 

used to separate multiple 

number entries (pages 

22, 37). 

“ Change sign of 

number or exponent of 

10 in display (pages 19, 

124). 
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‛ Enter exponent; 

next digits keyed in are 

exponents of 10  

(page 19). 

0 through 9 digit 

keys (page 22). 

. Decimal point  

(page 22) 

Display Control 

• Selects fixed 

point display mode 

(page 58). 

i Selects scientific 

notation display mode 

(page 59). 

^ Selects 

engineering notation 

display mode (page 

59). 

Mantissa. Pressing 

´ CLEAR u 
displays all 10 digits of 

the number in the X-

register as long as the 

u key is held 

down (page 60). It also 

clears any partial key 

sequences  

(page 19). 

Hyperbolic 

Functions 

P[ 
P\ 
P] Compute 

hyperbolic sine, 

hyperbolic cosine, or 

hyperbolic tangent, 

respectively (page 28). 

H [, H 

\, H ] 

Compute inverse 

hyperbolic sine, inverse 

hyperbolic cosine, or 

inverse hyperbolic 

tangent, respectively 

(page 28). 

Index Register 

Control 

V Index register (RI). 

Storage register for: 

indirect program 

execution – branching 

with t and G, 

looping with I and 

s – indirect flag 

control, and indirect 

display format control 

(page 107). Also used 

to enter complex 

numbers and activate 

Complex mode (page 

121). 

% Indirect 

operations. Used to 

address another storage 

register through RI for 

purposes of storage, 

recall, storage, 

arithmetic, and program 

loop control (page 

107). Also used with 

m to allocate 

storage registers (page 

215). 

Logarithmic and 

Exponential 

Functions 

N Computes natural 

logarithm (page 28). 

' Natural 

antilogarithm. Raises e 

to power of number in 

display (X-register) 

(page 28). 

o Computes 

common logarithm 

(base 10) (page 28). 

@ Common 

antilogarithm. Raises 

10 to power of number 

in display (X-register) 

(page 28). 

Y Raises number in 

Y-register to power of 
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number in display (X-

register) (enter y, then 

x). Causes the stack to 

drop (page 29). 

Mathematics 

-+-÷ 
Arithmetic operators; 

cause the stack to drop 

(page 29). 

¤ Computes square 

root x (page 25). 

x Computes 

the square of x 

(page 25). 

! Calculates the 

factorial (n!) of x or 

Gamma function (Γ) of 

(1 + x) (page 25). 

∕ Computes 

reciprocal (page 25). 

(For matrix use, refer to 

Matrix Functions, page 

264.) 

$ Places value of π 

in display (page 24). 

_ Solves for real 

root of a function f(x), 

with the expression for 

f(x) defined by the user 

in a labeled subroutine 

(page 180). 

f Integrate. 

Computes the definite 

integral of f(x), with the 

expression f(x) defined 

by the user in a labeled 

subroutine (page 194). 

Matrix Functions 

m Dimensions a 

matrix of a given name 

{A to E, V} 

(page 141). 

< Designates the 

matrix into which the 

result of certain matrix 

operations is placed 

(page 148). 

U User mode. Row 

and column numbers in 

R0 and R1 are 

automatically 

incremented each time 

O or l {A 

to E, %} is pressed 

(page 144). 

O and l { A 

to E, %} Stores or 

recalls matrix elements 

using the row and 

column numbers in R0 

and R1 (pages 144, 

146). 

O | and l 

| {A to E, % 

} Stores or recalls 

matrix elements using 

the row and column 

numbers in the Y- and 

X-registers (page 146). 

O and 

l> { A 

to E } Stores or 

recalls matrices for the 

specified matrix (pages 

142, 147). 

O and l 

< Stores or 

recalls descriptor of the 

result matrix (page 

148). 

l m {A 

through E, V} 

Recalls the dimensions 

of the given matrix into 

the Y- (row) and X- 

(column) registers 

(page 142). 

∕ Inverts the matrix 

whose descriptor is 

displayed and places 

the result in the 

specified result matrix. 

The descriptor of the 

result matrix is then 

displayed (page 150). 

+ - * Adds, 

subtracts, or multiplies 

the corresponding 

elements of two 
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matrices or of one 

matrix and a scalar. 

Stores in result matrix 

(page 152-155). 

÷ For two matrices, 

multiplies inverse of 

matrix in X by matrix 

in Y. For only one 

matrix, if matrix in Y, 

divides all elements of 

matrix by scalar in X; if 

matrix in X, multiplies 

each element of inverse 

of matrix by the scalar 

in Y. Stores in result  

matrix (pages 152-

155). 

“ changes sign of 

all elements in matrix 

specified in X-register 

(page 150). 

> {0 through 9} 

Matrix operations. 

> 0 Dimensions 

all matrices to 0×0 

(page 143). 

> 1 Sets row and 

column numbers in R0 

and R1 to 1 (page 143). 

> 2 Complex 

transform: Z
P
 to    

(page 164). 

> 3 inverse 

complex transform.    
to Z

P
 (page164). 

> 4 Transpose X 

to X
T
 (page 150). 

> 5 Transpose 

multiply: Y and X to 

Y
T
X (page 154). 

> 6 Calculates 

residuals in result 

matrix (page 159). 

> 7 Calculates 

row norm of matrix 

specified in X-register 

(page 150). 

> 8 Calculates 

Frobenius norm of 

matrix specified in X-

register (page 150). 

> 9 Calculates 

determinant of matrix 

specified in X-register 

(also does LU 

decomposition of the 

matrix) (page 150). 

c Transforms 

matrix stored in 

"partitioned form" (Z 
P
) 

to "complex form" (Z
C
) 

(page 162). 

p Transforms 

matrix stored in 

"complex form" (Z 
C
) to 

"partitioned form" (Z 
P
) 

(page 162). 

~ T 0 T 5  

T 6 Conditional 

tests for matrix 

descriptors in the X- or 

X- and Y-registers. 

~ and T 0 (x ≠ 

0) test the quantity in 

the X-register for zero. 

Matrix descriptors are 

considered nonzero.  

T 5 (x = y) and 

T  
6 (x ≠ y) test if the 

descriptors in X and Y 

are the same. The result 

affects program 

execution: skip (one 

line) if false (page 

174). 

Number Alteration 

a Yields absolute 

value of number in 

display (page 24). 

q Leaves only 

fractional portion of 

number in display  

(X-register) by 

truncating integer 

portion (page 24). 

‘ Leaves only 

integer portion of 

number in display (X-
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register) by truncating 

fractional portion (page 

24). 

& Rounds mantissa 

of entire (10-digit) 

number in X-register to 

match display format 

(page 24). 

Percentage 

k Percent. Computes 

x% (value in display) of 

number in the Y-

register (page 29). 

Unlike most two-

number functions, k 

does not drop the stack. 

∆ Percent difference. 

Computes percent of 

change between number 

in Y-register and 

number in display 

(page 30). Does not 

drop the stack. 

Prefix Keys 

´ Pressed before a 

function key to select 

the gold function 

printed above that key 

(page 18). 

| Pressed before a 

function key to select 

the blue function 

printed below that key 

(page 18). 

For other prefix keys, 

refer to Display Control 

keys (page 263), 

Storage keys (page 

267), and the 

Programming Summary 

and Index (page 269). 

CLEAR u 
Cancels any prefix 

keystrokes and partially 

entered instructions 

such as ´  i 

(page 19). Also 

displays the complete 

10-digit mantissa of the 

number in the display 

(page 60). 

Probability 

c Combination. 

Computes the number 

of possible sets of y 

different items taken x 

at a time, and causes the 

stack to drop (page 47). 

(For matrix use, refer to 

Matrix Functions keys, 

page 264.) 

p Permutation. 

Computes the number 

of possible different 

arrangements of y 

different items taken x 

at a time, and causes the 

stack to drop (page 47). 

(For matrix use, refer to 

Matrix Functions keys, 

page 264.) 

Stack 

Manipulation 

® Exchanges 

contents of X- and Y-

stack registers (page 

34). 

X X-register 

exchange. Exchanges 

contents of X-register 

with those of any other 

named storage register. 

Used with V , %, 

digit, or . digit 

address (page 42). 

} Real exchange 

imaginary. Exchanges 

the contents of the real 

and imaginary X-

registers and activates 

Complex mode (page 

124). 

) Rolls down 

contents of stack (page 

34). 

( Rolls up contents 

of stack (page 34). 
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` Clears contents 

of display (X-register) 

to zero (page 21). 

− In Run mode: 

removes the last digit 

keyed in, or clears the 

display (if digit entry 

has been terminated) 

(page21). 

Statistics 

z Accumulates 

numbers from X- and 

Y-registers into storage 

registers R2 through R7 

(page 49). 

w Removes numbers 

in X- and Y-registers 

from storage registers 

R2 through R7 for 

correcting z 

accumulations (page 

52). 

’ Computes mean of 

x- and y-values 

accumulated by z 

(page 53). 

S Computes sample 

standard deviations of 

x- and y-values 

accumulated by z 
(page 53). 

j Linear estimate 

and correlation 

coefficient. Computes 

estimated value of y (ŷ) 

for a given value of x 

by least squares method 

and places result in X-

register. Computes the 

correlation coefficient, 

r, of the accumulated 

data and places result in 

Y-register (page 55). 

L Linear Regression. 

Computes the y-

intercept and slope for 

the linear function best 

approximating the 

accumulated data. The 

value of the y-intercept 

is placed in the X-

register; the value of the 

slope is placed in the Y-

register (page 54). 

# Random 

number. Yields a 

pseudorandom number 

as generated from a 

seed stored using O 

# (page 48). 

CLEAR ∑ Clears 

contents of the statistics 

registers (R2 to R7) 

(page 49). 

Storage 

O Store. Stores a 

copy of a number into 

the storage register 

specified {0 to 9, .0 to 

.9, V, %} (page 

42). Also used for 

storage register 

arithmetic: new register 

contents = old register 

contents { +, -, 

*,  ÷ } display 

(page 44). 

l Recall. Recalls a 

copy of the number 

from the storage 

register specified {0 to 

9, .0 to .9, V, % } 

(page 42). Also used 

for storage register 

arithmetic: new display 

= old display {+, 

- *, ÷} 

register contents (page 

44). 

CLEAR Q Clears 

contents of all storage 

registers to zero 

(page 43). 

K Recalls into 

the display the number 

present before the 

previous operation 

(page 35). 
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Trigonometry 

D Sets decimal 

Degrees mode for 

trigonometric 

functions—indicated by 

absence of GRAD or 

RAD annunciator (page 

26). Not operative for 

complex trigonometry. 

R Sets Radians 

mode for trigonometric 

functions—indicated by 

RAD annunciator (page 

26).  

g Sets Grads mode 

for trigonometric 

functions—indicated by 

GRAD annunciator 

(page 26) Not operative 

for complex 

trigonometry.

[, \, ] 

Compute sine, cosine, 

or tangent, respectively, 

of number in display 

(X-register) (page 26). 

, , {, / 

Compute arc sine, arc 

cosine, or arc tangent, 

respectively, of number 

in display (X-register) 

(page 26). 
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¥ Program/Run 

mode. Sets the 

calculator to Program 

mode (PRGM 

annunciator on) or Run 

mode (PRGM 

annunciator cleared) 

(page 66). 

W Displays current 

status of calculator 

memory (number of 

registers dedicated to 

data storage, the 

common pool, and 

program memory) 

(page 215). 

W Displays current 

status of calculator 

memory (number of 

registers dedicated to 

data storage, the 

common pool, and 

program memory) 

(page 215). 

− Back arrow. In 

Program mode, deletes 

displayed instruction 

from program memory. 

All subsequent 

instructions are moved 

up (page 83). 

b Label. Used with 

the label designations 

below to denote the 

start of a program 

routine (page 67). 

ABCÁE 0 

1 2 3 4 5 6 7 8 9 .0 .1 .2 

.3 .4 .5 .6 .7 .8 .9 Label 

designations. When 

preceded by b, 

define the beginning of 

a program routine 

(page 67). Also used 

(without b) to 

initiate execution of a 

specific routine 

(page 69). 

U Activates and 

deactivates User mode, 

which exchanges the 

primary (white) and 

gold alternate functions 

(A through E) of 

the top left five 

functions (page 69). 

User mode also affects 

the matrix use of O 

or l {A 

throughE , %} 

User mode 

automatically 

increments R0 (row 

number) or R1 (column 

number) for storage or 

recall of matrix 

elements (page 144). 

t Go to. Used with 

a label designator 

(listed above) or V to 

transfer the position of 

the calculator to the 

designated label. If it is 

a program instruction, 

program execution 

continues. If it is not a 

program instruction, 

only the position 

change occurs (page 

90). If a negative 

number is stored in RI, 

t V will effect a 

transfer to a line 

number (page 109). 

t “ nnn Go to 

line number. Positions 

calculator to the 

existing line number 

specified by nnn. Not 

programmable (page 

82). 

G Go to subroutine. 

Used with a label 

designator (listed 

above) or start the 

execution of a given, 

labeled routine. Can be 

used both in a program 

and from the keyboard 

(in Run mode). A 

n instruction 

transfers execution back 

to the first line 
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following the G 

(page 101). 

‚ Back step. 

Moves calculator back 

one or more lines in 

program memory. (Also 

scrolls in Program 

mode.) Displays line 

number and contents of 

previous program line 

(page 83). 

Â Single step. In 

Program mode: moves 

calculator forward one 

or more lines in 

program memory. In 

Run mode: displays and 

executes the current 

program line, then steps 

to next line to be 

executed (page 82). 

© Pause. Halts 

program execution for 

about 1 second to 

display contents of X-

register, then resumes 

execution (page 68). 

¦ Run/Stop. 

Begins program 

execution from current 

line number in program 

memory. Stops 

execution if program is 

running (page 68). 

n Return. Causes 

calculator to return to 

line 000 and halt 

execution (if running) 

(page 68). If in a 

subroutine, merely 

returns to line after  

G (page 101). 

F Set flag (= true). 

Sets designated flag (0 

to 9). Flags 0 through 7 

are user flags, flag 8 

signifies Complex 

mode, and flag 9 

signifies an overflow 

condition (page 92). 

" Clear flag (= 

false). Clears 

designated flag (0 to 9) 

(page 92). 

? Is flag set? Tests 

for designated flag. If 

set, program execution 

continues; If cleared, 

program execution 

skips one line before 

continuing (page 92). 

£ ~ T {0 

through 9} Conditional 

tests. Each test 

compares value in X-

register against 0 or 

value in Y-register as 

indicated. If true, 

calculator executes 

instruction in next line 

of program memory. If 

false, calculator skips 

one line in program 

memory before 

resuming execution 

(page 91). ~ and 

T 0, 5, and 6 are 

also valid for complex 

numbers and matrix 

descriptors (pages 132. 

174). 

T 0 x ≠ 0 

T 1 x > 0 

T 2 x < 0 

T 3 x ≥ 0 

T 4 x ≤ 0 

T 5 x = y 

T 6 x ≠ y 

T 7 x > y 

T 8 x < y 

T 9 x ≥ y 

s Decrement and 

skip if equal to or less 

than. Decrements 

counter value in given 

register as stipulated. 

Skips one program line 

if new counter value is 

equal to or less than 

specified test value 

(page 109). 

I Increment and 

skip if greater than. 

Increments counter 

value in given register 

as stipulated. Skips one 

program line if new 

counter value is greater 

than specified test value 

(page 109). 
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Page numbers in bold type indicate primary references; page numbers in 

regular type indicate secondary references. 

A ___________________________________________  
Abbreviated key sequences, 78 

Absolute value (a ), 24 

Allocating memory, 42, 213-219 

Altering program lines, 83 

Annunciators, 

complex, 121 

list of, 60 

PRGM, 32, 66 

trigonometric, 26 

Antilogarithms, common and natural, 28 

Arithmetic operation, 29, 37 

Asymptotes, horizontal, 230 

Automatic incrementing of row and column numbers, 143 

B ___________________________________________  
Back-stepping (‚), 83 

Bacterial population example, 41 

Battery life, 259 

Battery replacement, 260, 259-260 

Bessel functions, 195, 197 

Branching, 

conditional, 91, 98, 177, 192 

indirect, 108-109, 112-114, 115 

simple, 90 

C ___________________________________________  
C annunciator, 99, 121 

Can volume and area example, 70-74 

Chain calculations, 22-23, 38 

Changing signs, 19 

in Complex mode, 124-125 
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in matrices, 177 

“, 19 

Clearing 

blinking in display, 100 

complex numbers, 125-127 

display, 21 

memory, 63 

operations, 20-21 

overflow condition, 45, 61 

prefix keys, 19 

statistics registers, 49 

Coefficient matrix, 156 

Combinations function (c), 47 

Common pool, 213 

Complex arithmetic example, 132 

Complex conjugate, forming, 125 

Complex matrix, 

inverting, 162, 164, 165 

multiplying, 162, 164, 166 

storing elements, 161 

transforming, 162, 164 

Complex mode, 120-121 

activating, 99, 120-121, 133 

deactivating, 121 

mathematics functions in, 131 

stack lift in, 124 

Complex numbers, 

clearing, 125-127 

converting polar and rectangular forms, 133-135 

entering, 121, 127, 128-129 

storing and recalling, 130 

Conditionals, indirect, 109-111, 112, 116 

Conditional tests, 91, 98, 192 

in Complex mode, 132 

with matrix descriptors, 174 

Constant matrix, 156 

Constants, 

calculations with, 39-42 

using in arithmetic calculations, 35, 39-42 
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Continuous Memory, 

duration of, 62 

resetting (clearing), 63 

what it retains, 43, 48, 58, 61, 62 

Conventions, handbook, 18 

Conversions, 

degrees and radians, 27 

polar and rectangular coordinates, 30-31 

time and angle, 26-27 

Correcting accumulated statistics data, 52 

Correlation coefficient, find the (j), 55-56 

\,{, 26 

Counters in program loops, 98, 112-114 

Crocus example, 43 

Cumulative calculations, 41 

D ___________________________________________  
Data storage, 42 

Data storage pool, 213-214 

Debt payment example, 95 

Decimal point, 22 

Decimal point display, 61 

Deflation, 233, 234, 237 

D, 26 

Determinant, 150 

Digit entry, 22 

in Complex mode, 121, 125, 127, 128-129 

termination, 22, 36, 209 

Digit separator display, 61 

m, 76-77, 215-217 

Disabling stack lift, 36 

Display (See also X-register), 

blinking, 100 

clearing, 21 

error messages, 61 

full mantissa, 60 

in Complex mode, 121 

Display format, 58-59, 61 

effect on ´ 200, 241, 244, 245-249 

Do if True rule, 92, 192 



274 Subject Index 

 

s 109-111, 112, 116 

E ___________________________________________  
‛, 19 

Electrical circuit example, 169-171 

Enabling stack lift, 36 

^, 59 

Engineering notation, 59 

v, 12, 33-34, 36 

effect on digit entry, 22, 29 

effect on stack movement, 37, 41 

Entering data for statistical analysis, 49 

Error 

conditions, 205-208 

display, 61 

stops, 78 

Errors, 

with f, 203-204 

with _, 187, 192, 193 

Euclidean norm (See Frobenius norm) 

Exchanging the real and imaginary stacks, 124 

Exponential function (See Power function) 

Exponents, 19, 20 

F ____________________________________________  
´, 18 

Factorial function (!), 25 

Falling stone example, 14 

•, 58 

Fixed decimal notation, 58 

Flag tests, 92, 98 

Flag 8, 99 

Flag 9, 100 

Format, handbook, 2, 18 

Fractional portion (q), 24 

Frobenius norm, 150, 177 

Functions, nonprogrammable, 80 

Functions, one-number, 22, 25 

Functions, primary and alternate, 18 

Functions, two-number, 22, 29 
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G ___________________________________________  
|, 18 

Gamma function (!), 25 

g, 26 

G, 101 

t, 90, 97, 98 

t “, 82 

H ___________________________________________  
Horner's Method, 79, 181 Hyperbolic 

functions, 28 

I ____________________________________________  
Imaginary stack, 

clearing the, 124 

creation of, 121-123, 133 

display of, 124 

stack lift of, 124 

Index register 

arithmetic, 108, 112 

display format control, 109, 114, 115, 116 

exchange with X-register, 108, 112 

flag control, 109, 115 

loop control, 107, 109-111 

storage and recall, 107, 111, 115 

Indirect addressing, 106-108, 115 

Initialization, 87 

Instructions, 74 

Integer portion (‘), 24 

Integrate function (f), 194-204 

accuracy of, 200-203, 240, 241-245 

algorithm for, 196, 240-241, 249-251, 255-256 

display format with, 245-249 

execution time for, 196, 200, 244, 245, 254-256 

memory usage, 204 

obtaining an approximation for, 257-258 

problems with erratic functions, 249-254 

programmed, 203-204 

recursive use of, 203 

subroutines for, 194-195 
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uncertainty in, 202-203, 240-244, 245-249 

Interchanging functions (See User mode) 

Interference, radio and television, 271 

Intermediate results, 22, 38 

Interpolation, using j, 57 

I, 109-111, 116 

Iterations using I and s, 111 

K ___________________________________________  
Keycodes, 74-75 

Keying in 

chain calculations, 22 

exponents, 19-20 

one-number functions, 22 

two-number functions, 22, 29 

L ____________________________________________  
Labels, 67, 77, 90, 97 

LAST X register, 35 

in matrix functions, 174-176 

operations saved by, 212 

putting constants in, 39-40 

to correct statistics data, 52 

Linear equations, solving with matrices, 138, 156 

Linear estimation (j), 55-56 

Linear regression (L), 54 

Loading the stack with constants, 39, 41 

Logarithmic functions, common and natural, 28 

Loop control number, 109, 116 

Looping, 90, 98 

Low-power indication, 62, 259 

LU decomposition, 148, 155, 156, 160 

Łukasiewicz, Jan, 32 

M ___________________________________________  
Mantissa, displaying full 10 digits, 60 

Matrix 

complex, 160-163 

copying, 149 

descriptors, 139, 147, 160, in RI, 173-174 
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dimensioning, 140, 142, 142, 174 

dimensions, displaying, 142, 147 

equation, complex, 168 

memory, 140, 171 

name (See Matrix descriptors) 

partitioned, 161, 164 

Matrix elements, 

accessing individually, 145-147 

displaying, 144 

storing and recalling, 143-144, 147, 149, 176 

Matrix functions, 

using RI, 173-174 

using registers, 173 

arithmetic, 153 

conditional, 177 

inverse, 150, 154 

multiplication, 154 

one-matrix, 149-151 

programmed, 176-177 

reciprocal, 150 

residual, 159 

row norm, 150, 177 

summary, 177-179 

transpose, 150, 151, 154 

Mean (’). 53 

W, 215 

Memory 

allocation, 76, 215-217 

availability, 75-77, 213, 215 

configuration, initial, 75-76 

distribution, 75, 213-214 

limitations, 75, 77, 217 

requirements for advanced functions, 218-219 

requirements for programming, 218 

stack (See Stack) 

status display, 215 

registers in, 213-215 

Metal box dimensions example, 189-191 

Minima, finding with _, 230 

Modes, trigonometric, 26 
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Multiple roots, 234 

N ___________________________________________  
Negative numbers, 19 

in Complex mode, 124-125 

Nested calculations, 38 

Neutral operations, 211 

Nonprogrammable functions, 80 

Normalizing statistics data, 50 

null display, 144, 149 

Numerical integration, 194-204 

O ___________________________________________  
=, 

and off, 18 

to reset Continuous Memory, 63 

to set decimal point display, 61 

Overflow condition, 45, 61, 100 

P____________________________________________  
¥, 66, 68 

Pause (©), 68 

Percent difference (∆), 29 

Percentage functions, 29-30 

Permutations function (p), 47 

Phasor notation, 133 

Pi, 24 

Polar coordinates, 30, in Complex mode, 133-135 

Power function (y), 29 

Prefix keys, 19 

PRGM annunciator, 66, 82 

Program 

control, indirect, 107, 109-111 

data entry techniques, 69-70 

end, 68, 77 

entering, 66-68 

labels, 67, 77 

loading, 66 

loop counters, 109, 112-114, 116 

mode, 66, 68, 86 
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position, changing, 82, 86 

running, 68-69 

starting, 69 

stops, 68, 78 

Program execution, 69 

after G, 101 

after t, 97 

after overflow, 100 

after test, 92 

from or through labels, 78-79 

Program lines (instructions), 67, 74 

deleting, 83, 86 

inserting, 83, 86 

Program memory, 67, 70, 75, 217-219 

automatic real location, 217-218 

clearing, 67 

moving in, 67 

Q ___________________________________________  
Quadratic equation, solving, 181 

R ___________________________________________  
R0 and R1, using to access matrix elements, 143, 146, 176 

R, 26 

Radioisotope example, 93-94 

Random number generator (#), 48 

Random number storage and recall, 48 

Recall arithmetic, 44 

Recalling accumulated statistics data, 50 

Recalling numbers (l), 42, 44, with matrices, 144, 149, 176 

Reciprocal (∕), 25, with matrix, 150 

Rectangular coordinates, 31, in Complex mode, 133-135 

Registers, converting, 215-217 

Reset Continuous Memory, 63 

Residual, 159 

Result matrix, 147, 148, 150, 152 

Return (n), 68, 77 

Returns, pending, 101, 105, 192, 204 

Reverse Polish Notation, 32 

} 124, 127 
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Rice yield example, 50-56 

Ridget hurling example, 184-186, 224-226 

Roll down, 34 

Roll up, 34 

Roots, eliminating, 233, 234, 237 

Roots, meaningless, 188, 191 

Rounding (&), 24 

Rounding in the display, 59 

Round-off errors, 52, 60, with _, 223, 237 

Row norm, 150, 177 

Run/Stop (¦), 68, 91 

running display, 69, 147, 182 

S ___________________________________________  
Scalar operations, 151-153 

i, 58 

Scientific notation, 58 

Scrolling, 82 

Secant line calculation example, 102 

Self-tests, 261 

Service information, 267-270 

Shear stress example, 227-228 

[, ,, 26 

Sine integral example, 198-199 

Single-stepping (Â), 82, 85 

Skip if True rule, 110 

Slope, finding the, 54 

_, 180-181 

accuracy, 222-226, specifying, 238 

algorithm, 182, 187-188, 220-222, 230-231 

conditions necessary for, 221-222 

constant function value with, 187, 189 

execution time, 238 

illegal math routine with, 187-188 

initial estimates with, 181, 188-192, 221, 233, 237 

memory usage, 193 

nonzero minimum of function with, 187 

programmed, 192 

recursive use of, 193 

restrictions on, 193 
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using as a conditional test, 192 

using functions with discontinuities, 227 

using functions with poles, 227 

using functions with several roots, 233-238 

with no root, 186-188, 192, 229 

Square root (¤), 25 

Squaring (x), 25 

Stack 

contents, with f, 197, 202 

drop, 33, 38 

lift, 33, 36, 38, 44, 209-211 

manipulation functions, 33-34, in Complex mode, 131 

imaginary, 120-125 

used to access matrix elements, 146-147 

Stack-disabling operations, 210 

Stack-enabling operations, 210-211 

Stack movement, 32, 33-37 

in matrix functions, 174-176 

with _, 181 

Standard deviation (S), 53, sample vs. population, 53 

Star example, 40 

Statistics, accumulation of data (z), 49 

Statistics, correction of accumulated data (z), 52 

Statistics functions, 

combinations, 47 

correlation coefficient, 55 

linear estimation, 55 

linear regression, 54 

mean, 53 

permutations, 47 

probability, 47 

standard deviation, 53 

Statistics registers, 49-50 

Status indicators, 60 

Storage and recall (O, l), 42, 43, 44 

complex numbers, 130 

direct (with V), 106, 107 

indirect, 106-107, 111 

matrices, 144, 149, 176 

matrix elements, 143-144, 147, 149 
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Storage arithmetic, 43 

Storage registers, 42 

allocation, 42, 215-217 

arithmetic, 43 

clearing, 43 

statistics, 42, 49 

Subroutine 

levels, 102, 105 

limits, 102, 105 

nesting example, 103 

returns, 101, 105 

using with _, 180-181, 192 

System flags, 92, 99 

T ____________________________________________  

T-register, 32, 33 

in matrix functions, 174-176 

with f, 202 

] /, 26 

T, 91 

Tracing, 82 

Transpose, 150, 151, 154 

Trigonometric modes in Complex mode, 121, 134 

Trigonometric operations, 26 

U ___________________________________________  

u display, 176 

Uncommitted registers, 213, 215, 217 

Underflow, 

in any register, 61 

storage register arithmetic, 45 

with _, 223 

User flags, 92 

User mode, 69, 79, with matrices, 143, 176 

V ___________________________________________  

Vector arithmetic, using statistics functions, 57 

W __________________________________________  
Wrapping, 86, 90 
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X ___________________________________________  

X exchange (X), 42 

X exchange Y (®), 34 

X-register, 32, 35, 37, 42, 60, 209-210 

imaginary, 210, 211 

in matrix functions, 141, 156, 175-176 

with f, 202 

with _, 181, 183, 102, 226 

Y ___________________________________________  
y-intercept, finding, 54 

Y-register, 32, 37 

in matrix functions, 141,156, 175-176 

with f, 202 

_, 181, 183, 192, 226 

Z ___________________________________________  

Z-register, 32 

in matrix functions, 174-176 

with f, 202 

with _,181, 183, 192, 226 
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Product Regulatory &   

Environment Information 

Federal Communications Commission Notice 
This equipment has been tested and found to comply with the limits for 

a Class B digital device, pursuant to Part 15 of the FCC Rules. These 

limits are designed to provide reasonable protection against harmful 

interference in a residential installation. This equipment generates, 

uses, and can radiate radio frequency energy and, if not installed and 

used in accordance with the instructions, may cause harmful 

interference to radio communications. However, there is no guarantee 

that interference will not occur in a particular installation. If this 

equipment does cause harmful interference to radio or television 

reception, which can be determined by turning the equipment off and 

on, the user is encouraged to try to correct the interference by one or 

more of the following measures: 

 Reorient or relocate the receiving antenna. 

 Increase the separation between the equipment and the receiver. 

 Connect the equipment into an outlet on a circuit different from 

that to which the receiver is connected. 

 Consult the dealer or an experienced radio or television 

technician for help. 

 

Modifications 

The FCC requires the user to be notified that any changes or 

modifications made to this device that are not expressly approved by 

Hewlett-Packard Company may void the user’s authority to operate the 

equipment. 

 



   

 

Declaration of Conformity for Products Marked with FCC 

Logo, United States Only 

This device complies with Part 15 of the FCC Rules. Operation is 

subject to the following two conditions: (1) this device may not cause 

harmful interference, and (2) this device must accept any interference 

received, including interference that may cause undesired operation. 

If you have questions about the product that are not related to this declaration, 

write to 

Hewlett-Packard Company 

P. O. Box 692000, Mail Stop 530113 

Houston, TX 77269-2000 

For questions regarding this FCC declaration, write to 

Hewlett-Packard Company 

P. O. Box 692000, Mail Stop 510101 

Houston, TX 77269-2000 

or call HP at 281-514-3333 

To identify your product, refer to the part, series, or model number located on 

the product. 

Canadian Notice 

This Class B digital apparatus meets all requirements of the Canadian 

Interference-Causing Equipment Regulations. 

Avis Canadien 

Cet appareil numérique de la classe B respecte toutes les exigences du 

Règlement sur le matériel brouilleur du Canada. 
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European Union Regulatory Notice 

Products bearing the CE marking comply with the following EU 

Directives: 

• Low Voltage Directive 2006/95/EC 

• EMC Directive 2004/108/EC 

• Ecodesign Directive 2009/125/EC, where applicable 

CE compliance of this product is valid if powered with the correct CE-

marked AC adapter provided by HP. 

Compliance with these directives implies conformity to applicable 

harmonized European standards (European Norms) that are listed in 

the EU Declaration of Conformity issued by HP for this product or 

product family and available (in English only) either within the product 

documentation or at the following web site: www.hp.eu/certificates  

(type the product number in the search field). 

The compliance is indicated by one of the following conformity 

markings placed on the product: 

 

For non-telecommunications products and 

for EU harmonized telecommunications 

products, such as Bluetooth® within power 

class below 10mW. 

xxxx*  

For EU non-harmonized telecommunications 

products (If applicable, a 4-digit notified 

body number is inserted between CE and !). 

Please refer to the regulatory label provided on the product. 

The point of contact for regulatory matters is: 

Hewlett-Packard GmbH, Dept./MS: HQ-TRE, Herrenberger Strasse 

140, 71034 Boeblingen, GERMANY. 

 

http://www.hp.eu/certificates


   

 

Japanese Notice 

  

Korean Notice 

 

 

Disposal of Waste Equipment by Users in Private 

Household in the European Union 

 

This symbol on the product or on its packaging 

indicates that this product must not be disposed of 

with your other household waste. Instead, it is your 

responsibility to dispose of your waste equipment by 

handing it over to a designated collection point for 

the recycling of waste electrical and electronic 

equipment. The separate collection and recycling of 

your waste equipment at the time of disposal will 

help to conserve natural resources and ensure that it 

is recycled in a manner that protects human health 

and the environment. For more information about 

where you can drop off your waste equipment for 

recycling, please contact your local city office, your 

household waste disposal service or the shop where 

you purchased the product. 
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Chemical Substances 

HP is committed to providing our customers with information about the 

chemical substances in our products as needed to comply with legal 

requirements such as REACH (Regulation EC No 1907/2006 of the 

European Parliament and the Council). A chemical information report 

for this product can be found at: www.hp.com/go/reach. 

Perchlorate Material - special handling may apply 

This calculator's Memory Backup battery may contain perchlorate and  

may require special handling when recycled or disposed in 

California. 

 

 
 

 

http://www.hp.com/go/reach

