

HP-15C

Owner’s Handbook

HP Part Number: 00015-90001

Edition 2.4, Sep 2011

Legal Notice

This manual and any examples contained herein are provided “as is”

and are subject to change without notice. Hewlett-Packard Company

makes no warranty of any kind with regard to this manual, including,

but not limited to, the implied warranties of merchantability non-

infringement and fitness for a particular purpose. In this regard, HP

shall not be liable for technical or editorial errors or omissions

contained in the manual.

Hewlett-Packard Company shall not be liable for any errors or

incidental or consequential damages in connection with the furnishing,

performance, or use of this manual or the examples contained herein.

Copyright © 2011 Hewlett-Packard Development Company, LP.

Reproduction, adaptation, or translation of this manual is prohibited

without prior written permission of Hewlett-Packard Company, except

as allowed under the copyright laws.

Hewlett-Packard Company

Palo Alto, CA

94304

USA

3

Introduction

Congratulations! Whether you are new to HP calculators or an experienced

user, you will find the HP-15C a powerful and valuable calculating tool.

The HP-15C provides:

 448 bytes of program memory (one or two bytes per instruction) and

sophisticated programming capability, including conditional and

unconditional branching, subroutines, flags, and editing.

 Four advanced mathematics capabilities: complex number calculations,

matrix calculations, solving for roots, and numerical integration.

 Direct and indirect storage in up to 67 registers.

This handbook is written for you, regardless of your level of expertise.

The beginning part covers all the basic functions of the HP-15C and how to

use them. The second part covers programming and is broken down into

three subsections – The Mechanics, Examples, and Further Information – in

order to make it easy for users with varying backgrounds to find the

information they need. The last part describes the four advanced

mathematics capabilities.

Before starting these sections, you may want to gain some operating and

programming experience on the HP-15C by working through the

introductory material, The HP-15C: A Problem Solver, on page 12.

The various appendices describe additional details of calculator operation,

as well as warranty and service information. The Function Summary and

Index and the Programming Summary and Index at the back of this manual

can be used for quick reference to each function key and as a handy page

reference to more comprehensive information inside the manual.

Also available from Hewlett-Packard is the HP-15C Advanced Functions

Handbook, which provides applications and technical descriptions for the

root-solving, integration, complex number, and matrix functions.

Note: You certainly do not need to read every part of the manual

before delving into the HP-15C Advanced Functions if you are

already familiar with HP calculators. The use of _ and f

requires a knowledge of HP-15C programming.

4

Contents

The HP-15C: A Problem Solver 12

A Quick Look at v ... 12

Manual Solutions .. 13

Programmed Solutions ... 14

Part I: HP-15C Fundamentals 17

Section 1: Getting Started .. 18

Power On and Off .. 18

Keyboard Operation ... 18

Primary and Alternate Functions 18

Prefix Keys .. 19

Changing Signs ... 19

Keying in Exponents ... 19

The "CLEAR" Keys .. 20

Display Clearing: ` and − 21

Calculations ... 22

One-Number Functions ... 22

Two-Number Functions and v 22

Section 2: Numeric Functions 24

Pi .. 24

Number Alteration Functions .. 24

One-Number Functions .. 25

General Functions .. 25

Trigonometric Operations .. 26

Time and Angle Conversions ... 26

Degrees/Radians Conversions 27

Logarithmic Functions ... 28

Hyperbolic Functions .. 28

Two-Number Functions .. 29

The Power Function .. 29

Percentages ... 29

Polar and Rectangular Coordinate Conversions 30

Section 3: The Automatic Memory Stack, LAST X, and

Data Storage .. 32

 Contents 5

The Automatic Memory Stack and Stack Manipulation 32

Stack Manipulation Functions .. 33

The LAST X Register and K 35

Calculator Functions and the Stack 36

Order of Entry and the v Key 37

Nested Calculations ... 38

Arithmetic Calculations With Constants 39

Storage Register Operations .. 42

Storing and Recalling Numbers 42

Clearing Data Storage Registers 43

Storage and Recall Arithmetic .. 43

Overflow and Underflow .. 45

Problems .. 45

Section 4: Statistics Functions 47

Probability Calculations ... 47

Random Number Generator ... 48

Accumulating Statistics ... 49

Correcting Accumulated Statistics 52

Mean .. 53

Standard Deviation ... 53

Linear Regression ... 54

Linear Estimation and Correlation Coefficient 55

Other Applications ... 57

Section 5: The Display and Continuous Memory 58

Display Control .. 58

Fixed Decimal Display .. 58

Scientific Notation Display .. 59

Engineering Notation Display .. 59

Mantissa Display ... 60

Round-Off Error .. 60

Special Displays ... 60

Annunciators ... 60

Digit Separators ... 61

Error Display ... 61

Overflow and Underflow .. 61

Low-Power Indication .. 62

Continuous Memory .. 62

Status ... 62

6 Contents

Resetting Continuous Memory .. 63

Part II: HP-15C Programming 65

Section 6: Programming Basics 66

The Mechanics ... 66

Creating a Program ... 66

Loading a Program .. 66

Intermediate Program Stops ... 68

Running a Program ... 68

How to Enter Data .. 69

Program Memory ... 70

Further Information .. 74

Program Instructions ... 74

Instruction Coding .. 74

Memory Configuration .. 75

Program Boundaries ... 77

Unexpected Program Stops ... 78

Abbreviated Key Sequences .. 78

User Mode .. 79

Polynomial Expressions and Horner's Method 79

Nonprogrammable Functions ... 80

Problems .. 81

Section 7: Program Editing .. 82

The Mechanics ... 82

Moving to a Line in Program Memory 82

Deleting Program Lines ... 83

Inserting Program Lines ... 83

Examples ... 83

Further Information .. 85

Single-Step Operations ... 85

Line Position .. 86

Insertions and Deletions .. 87

Initializing Calculator Status .. 87

Problems .. 87

Section 8: Program Branching and Controls 90

The Mechanics ... 90

Branching ... 90

Conditional Tests .. 91

 Contents 7

Flags .. 92

Examples ... 93

Example: Branching and Looping 93

Example: Flags .. 95

Further Information .. 97

GoTo .. 97

Looping .. 98

Conditional Branching .. 98

Flags .. 98

The System Flags: Flags 8 and 9 99

Section 9: Subroutines ... 101

The Mechanics ... 101

GoTo Subroutine and Return .. 101

Subroutine Limits .. 102

Examples ... 102

Further Information .. 105

The Subroutine Return ... 105

Nested Subroutines .. 105

Section 10: The Index Register and Loop Control 106

The V and % Keys .. 106

Direct Versus Indirect Data Storage With

The Index Register ... 106

Indirect Program Control With the Index Register 107

Program Loop Control ... 107

The Mechanics ... 107

Index Register Storage and Recall 107

Index Register Arithmetic ... 108

Exchanging the X-Register ... 108

Indirect Branching With V ... 108

Indirect Flag Control With V 109

Indirect Display Format Control With V 109

Loop Control with Counters: I and e 109

Examples ... 111

Examples: Register Operations 111

Example: Loop Control With s 112

Example: Display Format Control 114

Further Information .. 115

Index Register Contents ... 115

8 Contents

I and e .. 116

Indirect Display Control ... 116

Part III: HP-15C Advanced Functions 119

Section 11: Calculating With Complex Numbers 120

The Complex Stack and Complex Mode 120

Creating the Complex Stack .. 120

Deactivating Complex Mode ... 121

Complex Numbers and the Stack 121

Entering Complex Numbers ... 121

Stack Lift in Complex Mode ... 124

Manipulating the Real and Imaginary Stacks 124

Changing Signs .. 124

Clearing a Complex Number 125

Entering a Real Number ... 128

Entering a Pure Imaginary Number 129

Storing and Recalling Complex Numbers 130

Operations With Complex Numbers 130

One-Number Functions .. 131

Two-Number Functions ... 131

Stack Manipulation Functions 131

Conditional Tests ... 132

Complex Results from Real Numbers 133

Polar and Rectangular Coordinate Conversions 133

Problems ... 135

For Further Information ... 137

Section 12: Calculating With Matrices 138

Matrix Dimensions ... 140

Dimensioning a Matrix ... 141

Displaying Matrix Dimensions 142

Changing Matrix Dimensions .. 142

Storing and Recalling Matrix Elements 143

Storing and Recalling All Elements in Order 143

Checking and Changing Matrix Elements Individually 145

Storing a Number in All Elements of a Matrix 147

Matrix Operations ... 147

Matrix Descriptors ... 147

The Result Matrix ... 148

 Contents 9

Copying a Matrix ... 149

One-Matrix Operations .. 149

Scalar Operations ... 151

Arithmetic Operations .. 153

Matrix Multiplication ... 154

Solving the Equation AX = B .. 156

Calculating the Residual ... 159

Using Matrices in LU Form .. 160

Calculations With Complex Matrices 160

Storing the Elements of a Complex Matrix 161

The Complex Transformations Between ZP and Z 164

Inverting a Complex Matrix .. 165

Multiplying Complex Matrices 166

Solving the Complex Equation AX = B 168

Miscellaneous Operations Involving Matrices 173

Using a Matrix Element With Register Operations 173

Using Matrix Descriptors in the Index Register 173

Conditional Tests on Matrix Descriptors 174

Stack Operation for Matrix Calculations 174

Using Matrix Operations in a Program 176

Summary of Matrix Functions ... 177

For Further Information .. 179

Section 13: Finding the Roots of an Equation 180

Using _ ... 180

When No Root Is Found .. 186

Choosing Initial Estimates .. 188

Using _ in a Program .. 192

Restriction on the Use of _ 193

Memory Requirements ... 193

For Further Information .. 193

Section 14: Numerical Integration 194

Using f ... 194

Accuracy of f ... 200

Using f in a Program .. 203

Memory Requirements ... 204

For Further Information .. 204

10 Contents

Appendix A: Error Conditions 205

Appendix B: Stack Lift and the LAST X Register 209

Digit Entry Termination .. 209

Stack Lift .. 209

Disabling Operations ... 210

Enabling Operations .. 210

Neutral Operations .. 211

LAST X Register ... 212

Appendix C: Memory Allocation 213

The Memory Space ... 213

Registers ... 213

Memory Status (W) .. 215

Memory Reallocation .. 215

The m % Function .. 215

Restrictions on Reallocation ... 216

Program Memory .. 217

Automatic Program Memory Reallocation 217

Two-Byte Program Instructions 218

Memory Requirements for the Advanced Functions 218

Appendix D: A Detailed Look at _ 220

How _ Works ... 220

Accuracy of the Root ... 222

Interpreting Results .. 226

Finding Several Roots .. 233

Limiting the Estimation Time .. 238

Counting Iterations ... 239

Specifying a Tolerance ... 239

For Advanced Information .. 239

Appendix E: A Detailed Look at f 240

How f Works ... 240

Accuracy, Uncertainty, and Calculation Time 241

Uncertainty and the Display Format 245

Conditions That Could Cause Incorrect Results 249

Conditions That Prolong Calculation Time 254

Obtaining the Current Approximation to an Integral 257

For Advanced Information .. 258

 Contents 11

Appendix F: Batteries ... 259

Low-Power Indication ... 259

Installing New Batteries .. 259

Verifying Proper Operation (Self-Tests) 261

Function Summary and Index 262

Complex Functions .. 262

Conversions ... 262

Digit Entry .. 262

Display Control .. 263

Hyperbolic Functions ... 263

Index Register Control ... 263

Logarithmic and Exponential Functions 263

Mathematics .. 264

Matrix Functions ... 264

Number Alteration .. 265

Percentage ... 266

Prefix Keys ... 266

Probability ... 266

Stack Manipulation ... 266

Statistics .. 267

Storage ... 267

Trigonometry .. 268

Programming Summary and Index 269

Subject Index ... 271

12

The HP-15C:

A Problem Solver

The HP-15C Advanced Programmable Scientific Calculator is a powerful

problem solver, convenient to carry and easy to hold. Its continuous

memory retains data and program instructions indefinitely until you choose

to reset it. Though sophisticated, it requires no prior programming

experience or knowledge of programming languages to use it.

The new HP-15C is a modern re-release of the original HP-15C introduced

in 1982. While the battery life of the new version is now estimated to be 1

year for normal use, the calculator is now at least 150 times faster than the

original. The low-power indicator gives you plenty of warning before the

calculator stops functioning.

The HP-15C also conserves power by automatically shutting its display off

if it is left inactive for a few minutes. But don't worry about losing data –

any information contained in the HP-15C is saved by Continuous Memory.

A Quick Look at v

Your Hewlett-Packard calculator uses a unique operating logic, represented

by the v key, that differs from the logic in most other calculators.

You will find that using v makes nested and complicated

calculations easier and faster to work out. Let's get acquainted with how this

works.

For example, let's look at the arithmetic functions. First we have to get the

numbers into the machine. Is your calculator on? If not, press =. Is the

display cleared? To display all zeros, you can press | ` that is, press

|, then −.
*
 To perform arithmetic, key in the first number, press v

to separate the first number from the second, then key in the second number

and press +, -, * or ÷. The result appears immediately after you

press any numerical function key.

* If you have not used an HP calculator before, you will notice that most keys have three labels. To use the

primary function – the one printed in white on top of the key – just press that key. For those printed in gold

or blue, press the gold ´ key or the blue | key first.

 The HP-15C: A Problem Solver 13

The display format used in this handbook is • 4 (the decimal point is

―fixed‖ to show four decimal places) unless otherwise mentioned. If your

calculator does not show four decimal places, you may want to press

´• 4 to match the displays in the examples.

Manual Solutions

Run through the following two-number calculations. It is not necessary to

clear the calculator between problems. If you enter a digit incorrectly, press

− to undo the mistake, then key in the correct number.

To Compute Keystrokes Display

9 - 6 = 3 9 v 6 ­ 3.0000

9 × 6 = 54 9 v 6 * 54.0000

9 ÷ 6 = 1.5 9 v 6 ÷ 1.5000

9
6
 = 531,441 9 v 6 Y 531,441.0000

Notice that in the four examples:

 Both numbers are in the calculator before you press the function key.

 v is used only to separate two numbers that are keyed in one

after the other.

 Pressing a numeric function key, in this case ­ * ÷ or Y,

executes the function immediately and displays the result.

To see the close relationship between manual and programmed problem

solving, let's first calculate the solution to a problem manually, that is, from

the keyboard. Then we'll use a program to calculate the solution to the same

problem with different data.

14 The HP-15C: A Problem Solver

The time an object takes to fall to the ground (ignoring air friction) is given

by the formula

g

2h
t  ,

where t = time in seconds,

h = height in meters,

g = the acceleration due to gravity,

9.8 m/s
2
.

Example: Compute the time taken by a

stone falling from the top of the Eiffel

Tower (300.51 meters high) to the earth.

Keystrokes Display

300.51 v 300.5100 Enter h.

2 * 601.0200 Calculates 2h.

9.8 ÷ 61.3286 (2h) /g.

¤ 7.8313 Falling time, seconds.

Programmed Solutions

Suppose you wanted to calculate falling times from various heights. The

easiest way is to write a program to cover all the constant parts of a

calculation and provide for entry of variable data.

Writing the Program. The program is similar to the keystroke sequence

you used above. A label is useful to define the beginning of a program, and

a return is useful to mark the end of a program. Also, the program must

accommodate the entry of new data.

Loading the Program. You can load a program for the above problem by

pressing the following keys in sequence. (The display shows information

which you can ignore for now, though it will be useful later.)

 The HP-15C: A Problem Solver 15

Keystrokes Display

|¥ 000- Sets HP-15C to Program

mode. (PRGM

annunciator on.)

´ CLEAR M 000- Clears program memory.

(This step is optional

here.)

´bA 001-42,21,11 Label "A" defines the

beginning of the

program.

2 002- 2

* 003- 20

9 004- 9

 The same keys you

 pressed to solve the

. 005- 48 problem manually.

8 006- 8

÷ 007- 10

¤ 008- 11

|n 009- 43 32 ―Return‖ defines the end

of the program.

|¥ 7.8313 Switches to Run mode.

(No PRGM

annunciator.)

Running the Program. Enter the following information to run the

program.

Keystrokes Display

300.51 300.51 Height of the Eiffel Tower.

´A 7.8313 Falling time you calculated

earlier.

1050 ´A 14.6385 The time (seconds) for a stone

to reach the ground after release

from a blimp 1050 m high.

16 The HP-15C: A Problem Solver

With this program loaded, you can quickly calculate the time of descent of

an object from different heights. Simply key in the height and press

´A. Find the time of descent for objects released from heights of

100 m, 2 m, 275 m, and 2,000 m.

The answers are: 4.5175 s; 0.6389 s; 7.4915 s; and 20.2031 s.

That program was relatively easy. You will see many more aspects and

details of programming in part II. For now, turn the page to take an in-depth

look at some of the calculator's important operating basics.

Part l

HP-15C

Fundamentals

18

Section 1

Getting Started

Power On and Off

The = key turns the HP-15C on and off.
*
 To conserve power, the

calculator automatically turns itself off after a few minutes of inactivity.

Keyboard Operation

Primary and Alternate Functions

Most keys on your HP-15C perform one primary and two alternate, shifted

functions. The primary function of any key is indicated by the character(s)

on the face of the key. The alternate functions are indicated by the gold

characters printed above the key and the blue characters printed on the

lower face of the key.

 To select the primary function printed on

the face of a key, press only that key. For

example: ÷.

 To select the alternate function printed in

gold or blue, press the like-colored prefix

key (´ or |) followed by the function

key. For example: ´ _; |
£.

Throughout this handbook, we will observe certain conventions in referring

to alternate functions. References to the function itself will appear as just the

key name in a box, such as ―the W function.‖ References to the use of

the key will include the prefix key, such as ―press | W.‖ References

to the four gold functions printed under the bracket labeled ―CLEAR‖ will
be preceded by the word ―CLEAR‖, such as "the CLEAR Q function,‖

or ―press ´ CLEAR M.‖

* Note that the = key is lower than the other keys to help prevent its being pressed inadvertently.

 Section 1: Getting Started 19

Notice that when you press the ´ or |

prefix key, an f or g annunciator appears

and remains in the display until a function

key is pressed to complete the sequence.

Prefix Keys

A prefix key is any key which must precede another key to complete the

key sequence for a function. Certain functions require two parts: a prefix

key and a digit or other key. For your reference, the prefix keys are:

" ^ • G f > i O

m ´ | P I l F T

s ? t H b < _ X

If you make a mistake while keying in a prefix for a function, press ´

CLEAR u to cancel the error. The CLEAR u key is also used

to show the mantissa of a displayed number, so all 10 digits of the number

in the display will appear for a moment after the u key is pressed.

Changing Signs

Pressing “ (change sign) will change the sign (positive or negative) of

any displayed number. To key in a negative number, press “ after its

digits have been keyed in.

Keying in Exponents

‛ (enter exponent) is used when keying in a number with an exponent.

First key in the mantissa, then press ‛ and key in the exponent.

For a negative exponent press “ after keying in the exponent.
*
 For

example, to key in Planck's constant (6.6262×10
-34

 Joule-seconds) and

multiply it by 50:

* “ may also be pressed after ‛ and before the exponent, with the same result (unlike the mantissa,

where digit entry must precede “).

0.0000
 f

20 Section 1: Getting Started

Keystrokes Display

6.6262 6.6262

‛ 6.6262 00 The 00 prompts you to

key in the exponent.

3 6.6262 03 (6.6262×10
3
).

4 6.6262 34 (6.6262×10
34

).

“ 6.6262 -34 (6.6262×10
-34

).

v 6.6262 -34 Enters number.

50 * 3.3131 -32 Joule-seconds.

Note: Decimal digits from the mantissa that spill into the exponent

field will disappear from the display when you press ―, but will be

retained internally.

To prevent a misleading display pattern, ‛ will not operate with a

number having more than seven digits to the left of the radix mark (decimal

point), nor with a mantissa smaller than 0.000001. To key in such a number,

use a form having a greater exponent value (whether positive or negative).

For example, 123456789.8×10
23

 can be keyed in as 1234567.898×10
25

;

0.00000025×10
-15

 can be keyed in as 2.5×10
-22

.

The “CLEAR” Keys

Clearing means to replace a number with zero. The clearing operations in

the HP-15C are (the table is continued on the next page):

Clearing Sequence Effect

|` Clears display (X-register).

−

In Run mode: Clears last digit or entire display.

In Program mode: Deletes current instruction.

´ CLEAR ∑ Clears statistics storage registers, display,

and the memory stack (described in

section 3).

 Section 1: Getting Started 21

Clearing Sequence Effect

 ´ CLEAR M

In Run mode: Repositions program memory to line 000.

In Program mode: Deletes all program memory.

 ´ CLEAR Q Clears all data storage registers.

 ´ CLEAR u* Clears any prefix from a partially entered

key sequence.

* Also temporarily displays the mantissa.

Display Clearing: ` and −

The HP-15C has two types of display clearing operations: ` (clear X)

and − (back arrow).

In Run mode:

 ` clears the display to zero.

 − deletes only the last digit in the display if digit entry has not

been terminated by v or most other functions. You can then

key in a new digit or digits to replace the one(s) deleted. If digit entry

has been terminated, then − acts like `.

Keystrokes Display

12345 12,345 Digit entry not terminated.

− 1,234 Clears only the last digit.

9 12,349

¤ 111.1261 Terminates digit entry.

− 0.0000 Clears all digits to zero.

In Program mode:

 ` is programmable: it is stored as a programmed instruction,

and will not delete the currently displayed instruction.

 − is not programmable, so it can be used for program correction.

Pressing − will delete the entire instruction currently displayed.

22 Section 1: Getting Started

Calculations

One-Number Functions

A one-number function performs an operation using only the number in the

display. To use any one-number function, press the function key after the

number has been placed in the display.

Keystrokes Display

45 45

|o 1.6532

Two-Number Functions and v

A two-number function must have two numbers present in the calculator

before executing the function. +, -, * and ÷ are examples of

two-number functions.

Terminating Digit Entry. When keying in two numbers to perform an

operation, the calculator needs a signal that digit entry is terminated for the

first number. This is done by pressing v to separate the two numbers.

If, on the other hand, one of the numbers is already in the calculator as the

result of a previous operation, you do not need to use the v key. All

functions except the digit entry keys themselves
*
 have the effect of

terminating digit entry.

Notice that, regardless of the number, a decimal point always appears and a

set number of decimal places are displayed when you terminate digit entry

(as by pressing v).

Chain Calculations. In the following calculations, notice that:

 The v key is used only for separating the sequential entry of

two numbers.

 The operator is keyed in only after both operands are in the calculator.

 The result of any operation may itself become an operand. Such

intermediate results are stored and retrieved on a last-in, first-out

basis. New digits keyed in following an operation are treated as a new

number.

* The digit keys, +, “, ‛, and −.

 Section 1: Getting Started 23

Example: Calculate (9 + 17  4) ÷ 4.

Keystrokes Display

9 v 9.0000 Digit entry terminated.

17 + 26.0000 (9 + 17).

4 - 22.0000 (9 + 17 – 4).

4 ÷ 5.5000 (9 + 17 – 4) ÷ 4.

Even more complicated problems are solved in the same manner-using

automatic storage and retrieval of intermediate results. It is easiest to work

from the inside of parentheses outwards, just as you would with calculations

on paper.

Example: Calculate (6 + 7) × (9  3)

Keystrokes Display

6 v 6.0000 First solve for the

intermediate result of (6 + 7).

7 + 13.0000

9 v 9.0000 Then solve for the

intermediate result of (9  3).

3 - 6.0000

* 78.0000 Then multiply the

intermediate results together

(13 and 6) for the final

answer.

Try your hand at the following problems. Each time you press v or a
function key in a calculation, the preceding number is saved for the next
operation.

 (16 × 38) – (13 × 11) = 465.0000

4 × (17 – 12) ÷ (10 – 5) = 4.0000

 23
2
 – (13 × 9) + 1/7 = 412.1429

 5998.0)]7.05.12()8.04.5[(2 

24

Section 2

Numeric Functions

This section discusses the numeric functions of the HP-15C (excluding

statistics and advanced functions). The nonnumeric functions are discussed

separately (digit entry in section 1, stack manipulation in section 3, and

display control in section 5).

The numeric functions of the HP-15C are used in the same way whether

executed from the keyboard or in a program. Some of the functions (such as

a) are, in fact, primarily of interest for programming.

Remember that the numeric functions, like all functions except digit entry

functions, automatically terminate digit entry. This means a numeric

function does not need to be preceded or followed by v.

Pi

Pressing | $ places the first 10 digits of π into the calculator. $

does not need to be separated from other numbers by v.

Number Alteration Functions

The number alteration functions act upon the number in the display

(X-register).

Integer Portion. Pressing | ‘ replaces the number in the display

with the nearest integer of lesser or equal magnitude.

Fractional Portion. Pressing ´ q replaces the number in the display

with its fractional part (that is, the difference between the number and its

integer part).

Rounding. Pressing | & rounds all 10 internally held digits of the

mantissa of the displayed value to the number of digits specified by the

current •, i, or ^ display format.

Absolute Value. Pressing | a yields the absolute value of the

number in the display.

 Section 2: Numeric Functions 25

Keystrokes Display

123.4567 |‘ 123.0000

|K “ |‘ -123.0000 Reversing the sign does

not alter digits.

|K ´q -0.4567

1.23456789 “

|& -1.2346

´ CLEAR u

(release)

 1234600000 Temporarily displays all

-1.2346 digits in the mantissa.

|a 1.2346

One-Number Functions

One-number math functions in the HP-15C operate only upon the number in

the display (X-register).

General Functions

Reciprocal. Pressing ∕ calculates the reciprocal of the number in the

display.

Factorial and Gamma. Pressing ´ ! calculates the factorial of the

displayed value, where x is an integer 0≤x≤69.

You can also use ! to calculate the Gamma function, Γ(x), used in

advanced mathematics and statistics. Pressing ´ ! calculates Γ(x + 1),

so you must subtract 1 from your initial operand to get Γ(x). For the Gamma

function, x is not restricted to nonnegative integers.

Square Root. Pressing ¤ calculates the positive square root of the

number in the display.

Squaring. Pressing | x calculates the square of the number in the

display.

Keystrokes Display

25 ∕ 0.0400

8 ´ ! 40,320.0000 Calculates 8! or Γ(9).

3.9 ¤ 1.9748

12.3 | x 151.2900

26 Section 2: Numeric Functions

Trigonometric Operations

Trigonometric Modes. The trigonometric functions operate in the

trigonometric mode you select. Specifying a trigonometric mode does not

convert any number already in the calculator to that mode; it merely tells

the calculator what unit of measure (degrees, radians, or grads) to assign a

number for a trigonometric function.

Pressing | D sets Degrees mode. No annunciator appears in the

display. Degrees are in decimal, not minutes-seconds form.

Pressing | R sets Radians mode. The RAD annunciator appears in

the display. In Complex mode, all functions (except : and ;) assume

values are in radians, regardless of the trigonometric annunciator displayed.

Pressing | g sets Grads mode. The GRAD annunciator appears in

the display.

Continuous Memory will maintain the last trigonometric mode selected. At

"power up" (initial condition or when Continuous Memory is reset), the

calculator is in Degrees mode,

Trigonometric Functions. Given x in the display (X-register):

Pressing Calculates

[sine of x

|, arc sine of x

\ cosine of x

|{ arc cosine of x

] tangent of x

|/ arc tangent of x

Before executing a trigonometric function, be sure that the calculator is set

to the desired trigonometric mode (Degrees, Radians, or Grads).

Time and Angle Conversions

Numbers representing time (hours) or angles (degrees) can be converted by

the HP-15C between a decimal-fraction and a minutes-seconds format:

 Section 2: Numeric Functions 27

Hours.Decimal Hours Hours.Minutes Seconds Decimal Seconds

(H.h) (H.MMSSs)

Degrees.Decimal Hours Degrees.Minutes Seconds Decimal Seconds

(D.d) (D.MMSSs)

Hours/Degrees-Minutes-Seconds Conversion. Pressing ´ h

converts the number in the display from a decimal hours/degrees format to

an hours/degree-minutes-seconds-decimal seconds format.

For example, press ´ h to convert

Press ´ u to display the value to all possible decimal places:

Decimal Hours (or Degrees) Conversion. Pressing | À converts the

number in the display from an hours/degrees-minutes-seconds-decimal

seconds format to a decimal hours/degrees format.

Degrees/Radians Conversions

The d and r functions are used to convert angles to degrees

or radians (D.dR.r). The degrees must be expressed as decimal numbers,

and not in a minutes-seconds format.

Keystrokes Display

40.5 ´ r 0.7069 Radians.

| d 40.5000 40.5 degrees (decimal fraction).

1 1 4 0 4 2 0 0 0 0

to the hundred-thousandth of a second.

seconds

hours

1 . 1 4 0 4 1.2 3 4 5

minutes

hours

to

28 Section 2: Numeric Functions

Logarithmic Functions

Natural Logarithm. Pressing |Z calculates the natural logarithm of

the number in the display; that is, the logarithm to the base e.

Natural Antilogarithm. Pressing ' calculates the natural antilogarithm

of the number in the display; that is, raises e to the power of that number.

Common Logarithm. Pressing | o calculates the common

logarithm of the number in the display; that is, the logarithm to the base 10.

Common Antilogarithm. Pressing @ calculates the common

antilogarithm of the number in the display; that is, raises 10 to the power of

that number.

Keystrokes Display

45 |Z 3.8067 Natural log of 45.

3.4012 ' 30.0001 Natural antilog of 3.4012.

12.4578 | o 1.0954 Common log of 12.4578.

3.1354 @ 1,365.8405 Common antilog of

3.1354.

Hyperbolic Functions

Given x in the display (X-register):

Pressing Calculates

´P[hyperbolic sine of x

|H[inverse hyperbolic sine of x

´P\ hyperbolic cosine of x

|H\ inverse hyperbolic cosine of x

´P] hyperbolic tangent of x

|H] inverse hyperbolic tangent of x

 Section 2: Numeric Functions 29

Two-Number Functions

The HP-15C performs two-number math functions using two values entered

sequentially into the display. If you are keying in both numbers, remember

that they must be separated by v or any other function – like |

‘ or ∕ – that terminates digit entry.

For a two-number function, the first value entered is considered the y-value

because it is placed into the Y-register for memory storage. The second

value entered is considered the x-value because it remains in the display,

which is the X-register.

The arithmetic operators, +, -, *, and ÷, are the four basic two-

number functions. Others are given below.

The Power Function

Pressing Y calculates the value of y raised to the x power. The base

number, y, is keyed in before the exponent, x.

To Calculate Keystrokes Display

2
1.4

 2 v 1.4 Y 2.6390

2-1.4
 2 v 1.4 “ Y 0.3789

(-2)
3
 2 “ v 3 Y -8.0000

3 2 or 2
1/3

 2 v 3 ∕ Y 1.2599

Percentages

The percentage functions, k and ∆, preserve the value of the original

base number along with the result of the percentage calculation. As shown

in the example below, this allows you to carry out subsequent calculations

using the base number and the result without re-entering the base number.

Percent. The k function calculates the specified percentage of a base

number.

30 Section 2: Numeric Functions

For example, to find the sales tax at 3% and total cost of a $15.76 item:

Keystrokes Display

15.76 v 15.7600 Enters the base number (the price).

3 |k 0.4728 Calculates 3% of $15.76 (the tax).

+ 16.2328 Total cost of item ($15.76 + $0.47).

Percent Difference. The ∆ function calculates the percent difference

between two numbers. The result expresses the relative increase (a positive

result) or decrease (a negative result) of the second number entered

compared to the first number entered.

For example, suppose the $15.76 item only cost $14.12 last year. What is

the percent difference in last year’s price relative to this year’s?

Keystrokes Display

15.76 v 15.7600 This year's price (our base number)

14.12 |∆ -10.4061 Last year's price was 10.41% less

than this year's price.

Polar and Rectangular Coordinate Conversions

The : and ; functions are provided in the

HP-15C for conversions between polar

coordinates and rectangular coordinates. The

angle θ is assumed to be in the mode, whether

degrees (in a decimal format, not a minutes-

seconds format), radians, or grads. θ is

measured as shown in the illustration at right.

Polar Conversion. Pressing |:

(polar) converts a set of rectangular coordinates (x, y) to polar coordinates

(magnitude r, angle θ). The y-value must be entered first, the x-value

second. Upon executing |: r will appear in the display. Press ®

(X exchange Y) to bring θ out of the Y-register and into the display (X-

register). θ will be returned as a value between -180° and 180°, between -π

and π radians, or between -200 and 200 grads.

 Section 2: Numeric Functions 31

Rectangular Conversion. Pressing ´; (rectangular) converts a set of

polar coordinates (magnitude r angle θ) into rectangular coordinates (x, y). θ

must be entered first then r. Upon executing ´;, x will be displayed

first; press ® to display y.

Keystrokes Display

|D Set to Degrees mode (no annunciator).

5 v 5.0000 y-value.

10 10 x-value.

|: 11.1803 r.

® 26.5651 θ; rectangular coordinates converted to

polar coordinates.

30 v 30.0000 θ.

12 12 r.

´; 10.3923 x-value.

® 6.0000 y-value. Polar coordinates converted to

rectangular coordinates.

32

Section 3

The Automatic Memory Stack,

LAST X, and Data Storage

The Automatic Memory Stack

and Stack Manipulation

HP operating logic is based on a mathematical logic known as ―Polish

Notation,‖ developed by the noted Polish logician Jan Łukasiewicz

(Wookashye'veech) (1878-1956). Conventional algebraic notation places the

algebraic operators between the relevant numbers or variables when

evaluating algebraic expressions. Łukasiewicz’s notation specifies the

operators before the variables. For optimal efficiency of calculator use, HP

applied the convention of specifying (entering) the operators after

specifying (entering) the variable(s). Hence the term "Reverse Polish

Notation" (RPN).

The HP-15C uses RPN to solve complicated calculations in a

straightforward manner, without parentheses or punctuation. It does so by

automatically retaining and returning intermediate results. This system is

implemented through the automatic memory stack and the v key,

minimizing total keystrokes.

The Automatic

Memory Stack Registers

T 0.0000

Z 0.0000

Y 0.0000

X 0.0000 Always displayed

When the HP-15C is in Run mode (no PRGM annunciator displayed), the

number that appears in the display is the number in the X-register.

Section 3: The Memory Stack, LAST X, and Data Storage 33

Any number that is keyed in or results from the execution of a numeric

function is placed into the display (X-register). This action will cause

numbers already in the stack to lift, remain in the same register, or drop,

depending upon both the immediately preceding and the current operation.

Numbers in the stack are stored on a last-in, first-out basis. The three stacks

drawn below illustrate the three types of stack movement. Assume x, y, z,

and t represent any numbers which may be in the stack.

Stack Lift No Stack Lift or Drop
 lost

T t z T t t

Z z y Z z z

Y y x Y y y

X x π X x x

Keys: |$ ¤

 Stack Drop

T t t

Z z t

Y y z

X x x + y

Keys: +

Notice the number in the T-register remains there when the stack drops,

allowing this number to be used repetitively as an arithmetic constant.

Stack Manipulation Functions

v. Pressing v separates two numbers keyed in one after the

other. It does so by lifting the stack and copying the number in the display

(X-register) into the Y-register. The next number entered then writes over

the value in the X-register; there is no stack lift. The example below shows

what happens as the stack is filled with the numbers 1, 2, 3, 4. (The

34 Section 3: The Memory Stack, LAST X, and Data Storage

shading indicates that the contents of that register will be written over

when the next number is keyed in or recalled.)

 lost lost lost

T t z y y x

Z z y x x 1

Y y x 1 1 2

X x 1 1 2 2

Keys: 1 v 2 v

 lost

T x x 1 1

Z 1 1 2 2

Y 2 2 3 3

X 2 3 3 4

Keys: 3 v 4

) (roll down), ((roll up), and ® (X exchange Y).) and (

roll the contents of the stack registers up or down one register (one value

moves between the X- and the T-register). No values are lost. ®

exchanges the numbers in the X- and Y-registers. If the stack were loaded

with the sequence 1, 2, 3, 4, the following shifts would result from

pressing)) and ®.

T 1 4 1 1

Z 2 1 2 2

Y 3 2 3 4

X 4 3 4 3

Keys:

)
|
(

 ®

Section 3: The Memory Stack, LAST X, and Data Storage 35

The LAST X Register and K

The LAST X register, a separate memory register, preserves the value that

was last in the display before execution of a numeric operation.
*
 Pressing

|K (LAST X) places a copy of the contents of the LAST X register

into the display (X-register). For example:

 lost

T t t z

Z z z y

Y y y 16

X 4 16 4

Keys: |x |K

LAST X: / 4 4

The K feature saves you from having to re-enter numbers you want to

use again (as shown under Arithmetic Calculations With Constants, page

39). It can also assist you in error recovery, such as executing the wrong

function or keying in the wrong number.

For example, suppose you mistakenly entered the wrong divisor in a chain

calculation:

Keystrokes Display

287 v 287.0000

12.9 + 22.2481 Oops! The wrong divisor.

| K 12.9000 Retrieves from LAST X the last

entry to the X-register (the

incorrect divisor) before +

was executed.

* Unless that operation was ’, S, or L, which don’t use or preserve the value in the display (X-

register), but instead calculate from data in the statistics storage registers (R2 to R7). For a complete list of

operations which save x in LAST X, refer to appendix B.

36 Section 3: The Memory Stack, LAST X, and Data Storage

Keystrokes Display

* 287.0000 Reverses the function that
produced the wrong answer.

13.9 + 20.6475 The correct answer.

Calculator Functions and the Stack

When you want to key in two numbers, one after the other, you press

v between entries of the numbers. However, when you want to key

in a number immediately following any function (including manipulations

like)), you do not need to use v. Why? Executing most HP-15C

functions has this additional effect:

• The automatic memory stack is lift-enabled that is, the stack will lift

automatically when the next number is keyed or recalled into the

display.

• Digit entry is terminated, so the next number starts a new entry.

 lost

T t t z z

Z z z y z

Y y y 2 y

X 4 2 5 7

Keys: ¤ 5 +

There are four functions – v, `, z, and w – that disable stack

lift.
*
 They do not provide for the lifting of the stack when the next number is

keyed in or recalled. Following the execution of one of these functions, a new

number will simple write over the currently displayed number instead of causing

the stack to lift. (Although the stack lifts when v is pressed, it will not lift

when the next number is keyed in or recalled. The operation of v

illustrated on page 34 shows how v thus disables the stack.) In most

cases, the above effects will come so naturally that you won’t even think

about them.

* − will also disable the stack lift if digit entry is terminated, making − clear the entire display like

`. Otherwise, it is neutral. For a further discussion of the stack, refer to appendix B.

Section 3: The Memory Stack, LAST X, and Data Storage 37

 lost

T z z z z

Z z z z z

Y y y y y

X 7 0 6 y
6

Keys: |` 6 Y

Order of Entry and the v Key

An important aspect of two-number functions is the positioning of the

numbers in the stack. To execute an arithmetic function, the numbers should

be positioned in the stack in the same way that you would vertically

position them on paper. For example:

98 98 98 98
-15 +15 x15 15

As you can see, the first (or top) number would be in the Y-register, while

the second (or bottom) number would be in the X-register. When the

mathematics operation is performed, the stack drops, leaving the result in

the X-register. Here is how a subtraction operation is executed in the

calculator:

 lost lost

T t z y y y

Z z y x x y

Y y x 98 98 x

X x 98 98 15 83

Keys: 98 v 15 -

The same number positioning would be used to add 15 to 98, multiply 98 by

15, or divide 98 by 15.

38 Section 3: The Memory Stack, LAST X, and Data Storage

Nested Calculations

The automatic stack lift and stack drop make it possible to do nested

calculations without using parentheses or storing intermediate results. A

nested calculation is solved simply as a series of one- and two-number

operations.

Almost every nested calculation you are likely to encounter can be done

using just the four stack registers. It is usually wisest to begin the

calculation at the innermost number or pair of parentheses and work

outward (as you would for a manual calculation). Otherwise, you may need

to place an intermediate result into a storage register. For example, consider

the calculation of

3 [4 + 5 (6 + 7)] :

Keystrokes Display

6 v 7 + 13.0000 Intermediate result of

(6 + 7).

5 * 65.0000 Intermediate result of

5 (6 + 7).

4 + 69.0000 Intermediate result of

[4 + 5 (6 + 7)].

3 * 207.0000 Final result:

3 [4 + 5 (6 + 7)].

The following sequence illustrates the stack manipulation in this example.

The stack automatically drops after each two-number calculation, and then

lifts when a new number is keyed in. (For simplicity, throughout the rest of

this handbook we will not show arrows between the stacks.)

T t z y y y

Z z y x x y

Y y x 6 6 x

X x 6 6 7 13

Keys: 6 v 7 +

Section 3: The Memory Stack, LAST X, and Data Storage 39

T y y y y

Z y x y x

Y x 13 x 65

X 13 5 65 4

Keys: 5 * 4

T y y y y

Z x y x y

Y 65 x 69 x

X 4 69 3 207

Keys: + 3 *

Arithmetic Calculations With Constants

There are three ways (without using a storage register) to manipulate the

memory stack to perform repeated calculations with a constant:

1. Use the LAST X register.

2. Load the stack with a constant and operate upon different

numbers. (Clear the X-register every time you want to change

the number operated upon)

3. Load the stack with a constant and operate upon an

accumulating number. (Do not change the number in the X-

register.)

LAST X. Use your constant in the X-register (that is, enter it second) so

that it always will be saved in the LAST X register. Pressing |K will

retrieve the constant and place it into the X-register (the display). This can

be done repeatedly.

40 Section 3: The Memory Stack, LAST X, and Data Storage

Example: Two close stellar neighbors of Earth

are Rigel Centaurus (4.3 light-years away) and

Sirius (8.7 light-years away). Use the speed of

light, c (3.0×10
8
 meters/second, or 9.5×10

15

meters/year), to figure the distances to these

stars in meters. (The stack diagrams show only

one decimal place.)

T t z y y

Z z y x x

Y y x 4.3 4.3

X x 4.3 4.3 9.5 15

Keys: 4.3 v 9.5 ‛ 15

LAST X: / / / /

T y y y x

Z x y x 4.1 16

Y 4.3 x 4.1 16 8.7

X 9.5 15 4.1 16 8.7 9.5 15

Keys: * 8.7 |K

LAST X: / 9.5 15 9.5 15 9.5 15

T x x

Z 4.1 16 x

Y 8.7 4.1 16 (Rigel Centaurus is
4.1×10

16
 meters away.)

(Sirius is 8.3×10
16

meters away.)

X 9.5 15 8.3 16

Keys: *

LAST X: 9.5 15 9.5 15

Section 3: The Memory Stack, LAST X, and Data Storage 41

Loading the Stack with a Constant. Because the number in the T-register

is replicated when the stack drops, this number can be used as a constant in

arithmetic operations.

T c c New constant
generation.

Z c c

Y c c Drops to interact
with X-register.

X x cx

Keys: *

Fill the stack with a constant by keying it into the display and pressing

v three times. Key in your initial argument and perform the

arithmetic operation. The stack will drop, a copy of the constant will "fall"

into the Y-register, and a new copy of the constant will be generated in the

T-register.

If the variables change (as in the preceding example), be sure and clear the

display before entering the new variable. This disables the stack so that the

arithmetic result will be written over and only the constant will occupy the

rest of the stack.

If you do not have different arguments, that is, the operation will be

performed upon a cumulative number, then do not clear the display—simply

repeat the arithmetic operation.

Example: A bacteriologist tests a certain strain

of microorganisms whose population typically

increases by 15% each day (a growth factor of

1.15). If she starts with a sample culture of

1000, what will be the bacteria population at

the end of each day for four consecutive days?

Keystrokes Display

1.15 1.15 Growth factor.

vv
v

1.1500 Filling the stack.

1000 1,000 Initial culture size.

42 Section 3: The Memory Stack, LAST X, and Data Storage

Keystrokes Display

* 1,150.0000 Population at the end of day 1.

* 1,322.5000 Day 2.

* 1,520.8750 Day 3.

* 1,749.0063 Day 4.

Storage Register Operations

When numbers are stored or recalled, they are copied between the display

(X-register) and the data storage registers. At ―power-up‖ (initial turn-on or

Continuous Memory reset) the HP-15C has 21 directly accessible storage

registers: R0 through R9, R.0 through R.9, and the Index register (RI) (see the

diagram of the registers on the inside back cover). Six registers, R2 to R7,

are also used for statistics calculations.

The number of available data storage registers can be increased or

decreased. The m function, which is used to reallocate registers in

calculator memory, is discussed in appendix C, Memory Allocation. The

lowest-numbered registers are the last to be deallocated from data storage,

therefore it is wisest to store data in the lowest-numbered registers

available.

Storing and Recalling Numbers

O (store). When followed by a storage register address (0 through 9 or

.0 through .9*), this function copies a number from the display (X-register)

into the specified data storage register. It will replace any existing contents

of that register.

l (recall). Similarly, you can recall data from a particular register into

the display by pressing l followed by the register address. This brings

a copy of the desired data into the display; the contents of the storage

register remain unaltered.

X (X exchange). Followed by 0 through .9,
*
 this function exchanges the

contents of the X-register and the addressed data storage register. This is

useful to view storage registers without disturbing the stack.

* All storage register operations can also be performed with the Index register (using V or %), which is

covered in section 10, and with matrices, section 12.

Section 3: The Memory Stack, LAST X, and Data Storage 43

The above are stack lift-enabling operations, so the number remaining in the

X-register can be used for subsequent calculations. If you address a

nonexistent register, the display will show Error 3.

Example: Springtime is coming and you want to keep track of 24 crocuses

planted in your garden. Store the number of crocuses blooming the first day

and add to this the number of new blooms the second day.

Keystrokes Display

3 O 0 3.0000 Stores the number of first-day

blooms in R0.

Turn the calculator off. Next day, turn it back on again.

l 0 3.0000 Recalls the number of crocuses that

bloomed yesterday.

5 + 8.0000 Adds today's new blooms to get the

total blooming crocuses.

Clearing Data Storage Registers

Pressing ´ CLEAR Q (clear registers) clears the contents of all data

storage registers to zero. (It does not affect the stack or the LAST X

register.) To clear a single data storage register, store zero in that register.

Resetting Continuous Memory clears all registers and the stack.

Storage and Recall Arithmetic

Storage Arithmetic. Suppose you not only wanted to store a number, but

perform arithmetic with it and store the result in the same register. You can

do this directly – without using l – by using the following procedure.

1. Have your second operand (besides the one in storage) in the display

(as the result of a calculation, a recall, or keying in).

2. Press O.

3. Press +, -, *, or ÷.

4. Key in the register address (0 to 9, .0 to .9). (The Index register,

discussed in section 10, can also be used.)

44 Section 3: The Memory Stack, LAST X, and Data Storage

The number in the register is determined as follows:

For storage arithmetic,

new contents

of register
=

old contents

of register




×



number in

display

R0 r T t R0 r-x T t

 Z z Z z

 Y y Y y

 X x X x

 Keys: O-0

Recall Arithmetic. Recall arithmetic allows you to perform arithmetic with

the displayed value and a stored value without lifting the stack, that is,

without losing any values from the Y-, Z, and T-registers. The keystroke

sequence is the same as for storage arithmetic using l in place of

O.

For recall arithmetic,

new display = old display




×



contents of

register

R0 r T t R0 r T t

 Z z Z z

 Y y Y y

 X x X x-r

 Keys: l-0

Section 3: The Memory Stack, LAST X, and Data Storage 45

Example: Keep a running count of your newly blooming crocuses for two

more days.

Keystrokes Display

8 O 0 8.0000 Places the total number of blooms as of

day 2 in R0.

4 O + 0 4.0000 Day 3: adds four new blooms to those

already blooming.

3 O + 0 3.0000 Day 4: adds three new blooms.

24 l - 0 9.0000 Subtracts total number of blooms

summed in R0(15) from the total

number of plants (24); 9 crocuses have

not bloomed.

l 0 15.0000 (The number in R0 does not change.)

Overflow and Underflow

If an attempted storage or recall arithmetic operation would result in

overflow in a data storage register, the value in the affected register will be

replaced with ±9.999999999×10
99

 and the display will blink. To stop the

blinking (clear the overflow condition), press − or = or | " 9.

In case of underflow, the value in the register will be replaced with zero (no

display blinking). Overflow and underflow are discussed further on page

61.

Problems

1. Calculate the value of x in the following equation.

(2.01) (1.71)2.75)(3.15 4.3

0.32] 7.46)[(8.335.2)(4 8.33
x






Answer: 4.5728.

A possible keystroke solution is:

4 v 5.2 - 8.33 * | K 7.46 - 0.32 * ÷ 3.15
v 2.75 - 4.3 * 1.71 v 2.01 * - ÷ ¤

46 Section 3: The Memory Stack, LAST X, and Data Storage

2. Use arithmetic with constants to calculate the remaining

balance of a $1000 loan after six payments of $100 each and

an interest rate of 1% (0.01) per payment period.

Procedure: Load the stack with (1 + i), where i = interest rate,

and key in the initial loan balance. Use the following formula

to find the new balance after each payment.

New Balance = ((Old Balance)×(1 + i)) - Payment

The first part of the key sequence would be:

1.01 vvv 1000

For each payment, execute:

* 100 -

Balance after six payments: $446.32.

3. Store 100 in R5. Then:

1. Divide the contents of R5 by 25.

2. Subtract 2 from the contents of R5.

3. Multiply the contents of R5 by 0.75.

4. Add 1.75 to the contents of R5.

5. Recall the contents of R5.

Answer: 3.2500.

47

Section 4

Statistics Functions

A word about the statistics functions: their use is based on an understanding

of memory stack operation (Section 3). You will find that order of entry is

important for most statistics calculations.

Probability Calculations

The input for permutation and combination calculations is restricted to

nonnegative integers. Enter the y-value before the x-value. These functions,

like the arithmetic operators, cause the stack to drop as the result is placed

in the X-register.

Permutations. Pressing ´p calculates the number of possible

different arrangements of y different items taken in quantities of x items at a

time. No item occurs more than once in an arrangement, and different

orders of the same x items in an arrangement are counted separately. The

formula is

)!(

!
,

xy

y
P xy




Combinations. Pressing |c calculates the number of possible sets

of y different items taken in quantities of x items at a time. No item occurs

more than once in a set, and different orders of the same x items in a set are

not counted separately. The formula is

)!(!

!
,

xyx

y
C xy




Examples: How many different arrangements are possible of five pictures

which can be hung on the wall three at a time?

Keystrokes Display

5 v 3 3 Five (y) pictures put up three (x) at a

time.

´p 60.0000 Sixty different arrangement possible.

48 Section 4: Statistics Functions

How many different four-card hands can be dealt from a deck of 52 cards?

Keystrokes Display

52 v 4 4 Fifty-two (y) cards dealt four

(x) at a time.

|c 270,725.0000 Number of different hands

possible.

The maximum size of x or y is 9,999,999,999.

Random Number Generator

Pressing ´# (random number) will generate a random number

(part of a uniformly distributed pseudo-random number sequence) in the

range 0 ≤ r <1.
*

At initial power-up (including reset of Continuous Memory), the HP-15C

random number generator will use zero as a ―seed‖ to initiate a random

number sequence. Any time you generate a random number, that number

becomes the seed for the next random number. You can initiate a different

random number sequence by storing a new seed for the random number

generator. (Repetition of a random number seed will produce repetition of

the random number sequence.)

O´# will store the X-register number (0 ≤ r < 1) as a new seed

for the random number generator. (A value for r outside this range will be

converted to fit within the range.)

l´# will recall to the display the current random number seed.

Keystrokes Display

.5764 0.5764 Stores 0.5764 as random number seed.

(The ´ keystroke may be omitted.) O´

0.5764

´# 0.3422 Random number sequence initiated by the

above seed. ´# 0.2809

− 0.0000

* Passes the spectral test (D. Knuth, The Art of Computer Programming. Vol. 2. Seminumerical Algorithms,

Third Edition, 1998).

 Section 4: Statistics Functions 49

Keystrokes Display

l´

0.2809 Recall last random number generated,

which is the new seed. (The ´ may be

omitted.)

Accumulating Statistics

The HP-15C performs one- and two-variable statistical calculations. The

data is first entered into the Y- and X-registers. Then the z function

automatically calculates and stores statistics of the data in storage registers

R2 through R7. These registers are therefore referred to as the statistics

registers.

Before beginning to accumulate statistics for a new set of data, press

´ CLEAR ∑ to clear the statistics registers and stack. (If you have

reallocated registers in memory and any of the statistics registers no longer

exist, Error 3 will be displayed when you try to use CLEAR ∑, z, or

w Appendix C explains how to reallocate memory.)

In one-variable statistical calculations, enter each data point (x-value) by

keying in x and then press z.

In two-variable statistical calculations, enter each data pair (the x- and y-

values) as follows:

1. Key y into the display first.

2. Press v. The displayed y-value is copied into the Y-register.

3. Key x into the display.

4. Press z. The current number of accumulated data points, n, will be

displayed. The x-value is saved in the LAST X register and y remains

in the Y-register. z disable stack lift, so the stack will not lift

when the next number is keyed in.

50 Section 4: Statistics Functions

In some cases involving x or y data values that differ by a relatively small

amount, the calculator cannot compute s, r, linear regression, or ŷ, and will

display Error 2. This will not happen, however, if you normalize the data by

keying in only the difference between each value and the mean or

approximate mean of the values. This difference must be added back to the

calculations of x, ŷ, and the y-intercept (L). For example, if your x-values

were 665999, 666000, and 666001, you should enter the data as -1, 0, and 1;

then add 666000 back to the relevant results.

The statistics of the data are compiled as follows:

Register Contents

R2 n Number of data points accumulated (n also

appears in the X-register).

R3 Σx Summation of x-values.

R4 Σx
 2

 Summation of squares of x-values.

R5 Σy Summation of y-values.

R6 Σy
2
 Summation of squares of y-values.

R7 Σxy Summation of products of x- and y-values.

You can recall any of the accumulated statistics to the display (X-register)

by pressing l and the number of the data storage register containing the

desired statistic. If you press l z, Σy and Σx will be copied

simultaneously from R3 and R5 respectively, into the X-register and the Y-

register, respectively. (The sequence l z lifts the stack twice if stack

lift is enabled, once if not, and then enables stack lift.)

Example: Agronomist Silas Farmer has

developed a new variety of high-yield rice,

and has measured the plant's yield as a

function of fertilization. Use the z function

to accumulate the data below to find the values

for Σx, Σx
2
Σy, Σy

2
, and Σxy for nitrogen

fertilizer application (x) versus grain yield (y).

 Section 4: Statistics Functions 51

X
NITROGEN APPLIED

0.00 20.00 40.00 60.00 80.00
(kg per hectare *), x

Y

GRAIN YIELD

4.63 4.78 6.61 7.21 7.78 (metric tons per
hectare), y

*A hectare equals 2.47 acres.

Keystrokes Display

´ CLEAR ∑ 0.0000 Clears statistical storage
registers (R2 through R7 and
the stack).

´ • 2 0.00 Limits display to two decimal
places, like the data.

4.63 v 4.63

0 z 1.00 First data point.

4.78 v 4.78

20 z 2.00 Second data point.

6.61v 6.16

40 z 3.00 Third data point.

7.21 v 7.21

60 z 4.00 Fourth data point.

7.78 v 7.78

80 z 5.00 Fifth data point.

l 3 200.00 Sum of x-values, Σx (kg of
nitrogen).

l 4 12.000.00 Sum of squares of x-values,
Σx

2
.

l 5 31.01 Sum of y-values, Σy (grain
yield).

l 6 200.49 Sum of squares of y-values,
Σy

2
.

l 7 1,415.00 Sum of products of x- and
y-values, Σxy.

52 Section 4: Statistics Functions

Correcting Accumulated Statistics

If you discover that you have entered data incorrectly, the accumulated

statistics can be easily corrected. Even if only one value of an (x, y) data

pair is incorrect, you must delete and re-enter both values.

1. Key the incorrect data pair into the Y- and X-register.

2. Press |w to delete the incorrect data.

3. Key in the correct values for x and y.

4. Press z.

Alternatively, if the incorrect data point or pair is the most recent one

entered and z has been pressed, you can press |K |w to

remove the incorrect data.
*

Example: After keying in the preceding data. Farmer realizes he misread a

smeared figure in his lab book. The second y-value should have been 5.78

instead of 4.78. Correct the data input.

Keystrokes Display

4.78
v

4.78 Keys in the data pair we want to replace

and deletes the accompanying statistics.

The n-value drops to four. 20 |w 4.00

5.78
v

5.78 Keys in and accumulates the replacement

data pair.

20 z 5.00 The n -value is back to five.

We will use these statistics in the rest of the examples in this section.

* Note that these methods of data deletion will not delete any rounding errors that may have been generated

in the statistics registers. This difference will not be serious unless the erroneous pair has a magnitude that

is enormous compared with the correct pair, in such a case, it would be wise to start over!

 Section 4: Statistics Functions 53

Mean

The ’ function computes the arithmetic mean (average) of the x-and y-

values using the formulas shown in appendix A and the statistics

accumulated in the relevant registers. When you press |’ the contents

of the stack lift (two registers if stack lift is enabled, one if not); the mean of

x (x) is copied into the X-register as the mean of y (y) is copied

simultaneously into the Y-register. Press ® to view y.

Example: From the corrected statistics data we have already entered and

accumulated, calculate the average fertilizer application, x. and average

grain yield y, for the entire range.

Keystrokes Display

|’ 40.00 Average kg of nitrogen, x, for all cases.

® 6.40 Average tons of rice, y, for all cases.

Standard Deviation

Pressing |S computes the standard deviation of the accumulated

statistics data. The formulas used to compute sx, the standard deviation of

the accumulated x-values, and sy, the standard deviation of the accumulated

y-values, are given in appendix A.

This function gives an estimate of the population standard deviation from

the sample data, and is therefore termed the sample standard deviation.
*

When you press |S, the contents of the stack registers are lifted (twice

if stack lift is enabled, once if not); sx is placed into the X-register and sy is

placed into the Y-register. Press ® to view sy.

* When your data constitutes not just a sample of a population but all of the population, the standard

deviation of the data is the true population standard deviation (denoted ). The formula for the true

population standard deviation differs by a factor of nn /)1( from the formula used for the S

function. The difference between the values is small for large n, and for most applications can be ignored.

But if you want to calculate the exact value of the population standard deviation for an entire population,

you can easily do so: simply add, using z, the mean (x) of the data to the data before pressing |S.

The result will be the population standard deviation. (If you subsequently correct any of your accumulated

data values, remember to delete the first mean value and add the corrected one.)

54 Section 4: Statistics Functions

Example: Calculate the standard deviation about the mean calculated

above.

Keystrokes Display

|S 31.62 Standard deviation about the mean nitrogen

application, x.

® 1.24 Standard deviation about the mean grain

yield, y.

Linear Regression

Linear regression is a statistical method for finding a straight line that best

fits a set of two or more data pairs, thus providing a relationship between

two or more data pairs, thus providing a relationship between two variables.

By the method of least squares, ´L will calculate the slope, A, and y-

intercept, B, of the linear equation:

y=Ax+B

1. Accumulate the statistics of your data using the z key.

2. Press ´L. The y-intercept, B, appears in the display (X-

register). The slope, A, is copied simultaneously into the Y-

register.

3. Press ® to view A. (As is the case with the functions ’

and S, L causes the stack to lift two registers if it's

enabled, one if not).

T t y y

Z z x y

Y y A slope B y-intercept

X x B y-intercept A slope

Keys: ´L ®

The slope and y-intercept of the least squares line of the accumulated data

are calculated using the equations shown in appendix A.

 Section 4: Statistics Functions 55

Example: Find the y-intercept and slope of the linear approximation of the

data and compare to the plotted data on the graph below.

Keystrokes Display

´L 4.86 y-intercept of the line.

® 0.04 Slope of the line.

Linear Estimation and Correlation Coefficient

When you press ´j the linear estimate, ŷ, is placed in the X-register

and the correlation coefficient, r, is placed in the Y-register. To display r,

press ®.

56 Section 4: Statistics Functions

Linear Estimation. With the statistics accumulated, an estimated value for

y, denoted ŷ, can be calculated by keying in a proposed value for x and

pressing ´j.

An Estimated value for x (denoted x̂) can be calculated as follows:

1. Press ´L.

2. Key in the known y-value.

3. Press ® - ® ÷.

Correlation Coefficient. Both linear regression and linear estimation

presume that the relationship between the x and y data values can be

approximated by a linear function. The correlation coefficient, r, is a

determination of how closely your data fit a straight line. The range is -1  r

 1, with -1 representing a perfectly negative correlation and +1

representing a perfectly positive correlation.

Note that if you do not key in a value for x before executing ´j, the

number previously in the X-register will be used (usually yielding a

meaningless value for ŷ).

Example: What if 70 kg of nitrogen fertilizer were applied to the rice field?

Predict the grain yield based on Farmer’s accumulated statistics. Because

the correlation coefficient is automatically included in the calculation, you

can view how closely the data fit a straight line by pressing ® after the

y prediction appears in the display.

 Section 4: Statistics Functions 57

Keystrokes Display

70 ´j 7.56

Predicted grain yield in tons/hectare.

® 0.99 The original data closely approximates a

straight line.

Other Applications

Interpolation. Linear interpolation of tabular values, such as in

thermodynamics and statistics tables, can be carried out very simply on the

HP-15C by using the j function. This is because linear interpolation is

linear estimation: two consecutive tabular values are assumed to form two

points on a line, and the unknown intermediate value is assumed to fall on

that same line.

Vector Arithmetic. The statistical accumulation functions can be used to

perform vector addition and subtraction. Polar vector coordinates must be

converted to rectangular coordinates upon entry (θ, v, r ;, z).
The results are recalled from R3 (Σx) and R5 (Σy) (using l z) and

converted back to polar coordinates, if necessary. Remember that for polar

coordinates the angle is between -180° and 180° (or -π and π radians, or -

200 and 200 grads). To convert to a positive angle, add 360 (or 2π or 400)

to the angle.

For the second vector entered, the final keystroke will be either z or

w, depending on whether the two vectors should be added or subtracted.

58

Section 5

The Display

and Continuous Memory

Display Control

The HP-15C has three display formats – •, i, and ^ – that

use a given number (0 through 9) to specify display format. The illustration

below shows how the number 123,456 would be displayed specified to four

places in each possible mode.

´ • 4 : 123,456.0000

´ i 4 : 1.2346 05

´ ^ 4 : 123.46 03

Owing to Continuous Memory, any change you make in the display format

will be preserved until Continuous Memory is reset.

The current display format takes effect when digit entry is terminated; until

then, all digits you key in (up to 10) are displayed.

Fixed Decimal Display

• (fixed decimal) format displays a figure with the number of decimal

places you specify (up to nine, depending on the size of the integer portion.)

Exponents will be displayed if the number is too small or too large for the

display. At ―power-up,‖ the HP-15C is in • 4 format. The key sequence

is ´• n.

Keystrokes Display

123.4567895 123.4567895

´• 4 123.4568

´• 6 123.456790 Display is rounded to six decimal

places. (Ten places are stored

internally.)

´• 4 123.4568 Usual • 4 display.

 Section 5: The Display and Continuous Memory 59

Scientific Notation Display

i (scientific) format displays a number in scientific notation. The

sequence ´i n specifies the number of decimal places to be shown.

Up to six decimal places can be shown since the exponent display takes

three spaces. The display will be rounded to the specified number of

decimal places; however, if you specify more decimal places than the six

places the display can hold (that is, i 7, 8, or 9), rounding will occur in

the undisplayed seventh, eighth, or ninth decimal place.
*

With the previous number still in the display:

Keystrokes Display

´i 6 1.234568 02 Rounds to and shows six

decimal places.

´i 8 1.234567 02 Rounds to eight decimal places,

but displays only six.

Engineering Notation Display

^ (engineering) format displays numbers in an engineering notation

format in a manner similar to i, except:

 In engineering notation, the first significant digit is always present in

the display. The number you key in after ´^ specifies the

number of additional digits to which you want to round the display.

 Engineering notation shows all exponents in multiples of three.

Keystrokes Display

.012345 0.012345

´^

1

12. -03 Rounds to the first digit after

the leading digit.

´^ 3 12.35 -03

10 * 123.5 -03 Decimal shifts to maintain

multiple of three in exponent.

´• 4 0.1235 Usual • 4 format.

* Therefore, the display shows no distinction among i. 7, 8, and 9 unless the number rounded up is a 9,

which carries a 1 over into the next higher decimal place.

60 Section 5: The Display and Continuous Memory

Mantissa Display

Regardless of the display format, the HP-15C always internally holds each

number as a 10-digit mantissa and a two-digit exponent of 10. For example,

π is always represented internally as 3.141592654×10
00

, regardless of what

is in the display.

When you want to view the full 10-digit mantissa of a number in the X-

register, press ´ CLEAR u. To keep the mantissa in the display,

hold the u key down.

Keystrokes Display

| $ 3.1416

´ CLEAR
u (hold) 3141592654

Round-Off Error

As mentioned earlier, the HP-15C holds every value to 10 digits internally.

It also rounds the final result of every calculation to the 10th digit. Because

the calculator can provide only a finite approximation for numbers such as 

or 2/3 (0.666…), a small error due to rounding can occur. This error can be

increased in lengthy calculations, but usually is insignificant. To accurately

assess this effect for a given calculation requires numerical analysis beyond

our scope and space here! Refer to the HP-15C Advanced Functions

Handbook for a more detailed discussion.

Special Displays

Annunciators

The HP-15C display contains eight annunciators that indicate the status of

the calculator for various operations. The meaning and use of these

annunciators is discussed on the following pages:

* Low-power indication, page 62.

USER User mode, pages 79 and 144.

f and g Prefixes for alternate functions, pages 18-19.

RAD and GRAD Trigonometric modes, page 26.

C Complex mode, page 121.

PRGM Program mode, page 66.

 Section 5: The Display and Continuous Memory 61

Digit Separators

The HP-15C is set at power-up so that it separates integral and fractional

portions of a number with a period (a decimal point), and separates groups

of three digits in the integer portion with a comma. You can reverse this

setting to conform to the numerical convention used in many countries. To

do so, turn off the calculator. Press and hold =, press and hold .,

release =, then release . (= / .). (Repeating this sequence will

set the calculator to the previous display convention.)

Keystrokes Display

12345.67 12,345.67

= / . 12.345.6700

= / . 12,345.6700

Error Display

If you attempt an improper operation—such as division by zero—an error

message (Error followed by a digit) will appear in the display. For a

complete listing of error messages and their causes, refer to appendix A.

To clear the Error display and restore the calculator to its prior condition,

press any key. You can then resume normal operation.

Overflow and Underflow

Overflow. When the result of a calculation in any register is a number with

a magnitude greater than 9.999999999×10
99

, ± 9.999999999×10
99

 is placed

in the affected register and the overflow flag, flag 9, is set.
*
 Flag 9 causes

the display to blink. When overflow occurs in a running program, execution

continues until completion of the program, and then the display blinks.

The blinking can be stopped and flag 9 cleared by pressing −, = or

|" 9.

Underflow. If the result of a calculation in any register is a number with a

magnitude less than 1.000000000×10
-99

, that number will be replaced by

zero. Underflow does not have any other effect.

* Recall that display does not include the last three digits of the mantissa.

62 Section 5: The Display and Continuous Memory

Low-Power Indication

When a flashing asterisk, which indicates

low battery power, appears in the lower

left-hand side of the display, there is no

reason to panic. You still have plenty of

calculator time remaining: at least 10

minutes if you continuously run programs,

and at least an hour if you do calculations

manually. Refer to appendix F (page 259)

for information on replacing the batteries.

Continuous Memory

Status

The Continuous Memory feature of the HP-15C retains the following in the

calculator, even when the display is turned off:

 All numeric data stored in the calculator.

 All programs stored in the calculator.

 Position of the calculator in program memory.

 Display mode and setting.

 Trigonometric mode (Degrees, Radians, or Grads).

 Any pending subroutine returns.

 Flag settings (except flag 9, which clears when the display is

manually turned off).

 User mode setting.

 Complex mode setting.

When the HP-15C is turned on, it always ―wakes up‖ in Run mode. If the

calculator is turned off, Continuous Memory will be preserved for a short

period while the batteries are removed. Data and programs are preserved

longer than other aspects of calculator status. Refer to appendix F for

instructions on changing batteries.

0.0000
*

 Section 5: The Display and Continuous Memory 63

Resetting Continuous Memory

If at any time you want to reset (entirely clear) the HP-15C Continuous

Memory:

1. Turn the calculator off.

2. Press and hold the = key, then press and hold the -

key.

3. Release the = key, then the - key. (This convention

is represented as = / -.)

When Continuous Memory is reset, Pr Error (power error) will be

displayed. Press any key to clear the display.

Note: Continuous Memory can inadvertently be interrupted and

reset if the calculator is dropped or otherwise traumatized.

Part ll

HP-15C

Programming

66

Section 6

Programming Basics

The next five sections are dedicated to explaining aspects of programming

the HP-15C. Each of these programming sections will first discuss basic

techniques (The Mechanics), then give examples for the implementation of

these techniques (Examples), and lastly discuss finer points of operation in

greater detail (Further Information). Read only as far as you need to support

your use of the HP-15C.

The Mechanics

Creating a Program

Programming the HP-15C is an easy matter, based simply on recording the

keystroke sequence used when calculating manually. (This is called

―keystroke programming‖.) To create a program out of a series of

calculation steps requires two extra manipulations: deciding where and how

to enter your data; and loading and storing the program. In addition,

programs can be instructed to make decisions and perform iterations

through conditional and unconditional branching.

As we step through the fundamentals of programming, we'll rework the

falling object program illustrated in the Problem Solver (page 14).

Loading a Program

Program Mode. Press | ¥ (program/run) to set the calculator to

Program mode (PRGM annunciator on). Functions are stored and not

executed when keys are pressed in Program mode.

Keystrokes Display

| ¥ 000- Switches to Program mode;

PRGM annunciator and line

number (000) displayed.

 Section 6: Programming Basics 67

Location in Program Memory. Program memory – and therefore the

calculator's position in program memory – is demarcated by line numbers.

Line 000 marks the beginning of program memory and cannot be used to

store an instruction. The first line that contains an instruction is line 001.

Program lines other than 000 do not exist until instructions are written for

them.

You can start a program at any existent line (designated nnn), but it is

simplest and safest to start an independent program (as opposed to a

subroutine) at the beginning of program memory. As you write, any existing

program lines will be preserved and ―bumped‖ down in program memory.

Press t “ 000 (in Program or Run mode) to move to line 000

without recording the t statement. In Run mode, ´ CLEAR M

will also reset the calculator to line 000- without clearing program memory.

Alternatively, you can clear program memory, which will erase all

programs in memory and position you to line 000. To do so, press ´

CLEAR M in Program mode.

Program Begin. A label instruction – ´b followed by a letter

(A through E) or number (0 through 9 or .0 through .9) – is used to

define the beginning of a program or routine. The use of labels allows you

to quickly select and run one particular program or routine out of several.

Keystrokes Display

´ CLEAR

M
000- Clears program memory and

sets to line 000 (start of

program memory).

´ b A 001-42,21,11

Recording a Program. Any key pressed—operator or constant—will be

recorded in memory as a programmed instruction.
*

* Except the nonprogrammable functions, which are listed on page 80.

68 Section 6: Programming Basics

Keystrokes Display

2 002- 2

* 003- 20

9 004- 9 Given h in the X-register,

lines 002 to 008 calculate . 005- 48

8 006- 8

9.8

2h
. ÷ 007- 10

¤ 008- 11

Program End. There are three possible endings for a program:

 | n (return) will end a program, return to line 000, and halt.

 ¦ will stop a program without moving to line 000.

 The end of program memory contains an automatic n.

Keystrokes Display

|n 009- 43 32 Optional if this is the last

program in memory.

Intermediate Program Stops

Use ´ © (pause) as a program instruction to momentarily stop a

program and display an intermediate result. (Use more than one © for a

longer pause.)

Use a ¦ (run/stop) instruction to stop the program indefinitely. The

program will remain positioned at that line. You can resume program

execution (from that line) by pressing ¦ during Run mode, that is, from

the keyboard.

Running a Program

Run Mode. Switch back to Run mode when you are done programming:

| ¥. Program execution must take place in Run mode.

 Section 6: Programming Basics 69

Keystrokes Display

|¥ Run mode; no PRGM annunciator

displayed. (The display will depend

on any previous result.)

The position in program memory does not change when modes are

switched. Should the calculator be shut off, it always ―wakes up‖ in

Run mode.

Executing a Program. In Run mode, press ´ letter label or G digit

(or letter) label. This addresses a program and starts its execution. The

display will flash running.

Keystrokes Display

300.51 300.51 Key a value for h into the X-register.

´A 7.8313 The result of executing program

―A‖. (The number of seconds it

takes an object dropped from 300.51

meters high to hit the ground.)

Restarting a Program. Press ¦ to continue execution of a program

that was stopped with a ¦ instruction.

User Mode. User mode is an optional condition to save keystrokes when

executing letter-named programs. Pressing ´ U will interchange the

´-shifted and primary functions of the A through E keys. You can

then execute a program using just one keystroke (skipping the ´ or

G).

How to Enter Data

Every program must take into account how and when data will be supplied.

This can be done in Run mode before running the program or during an

interruption in the program.

1. Prior entry. If a variable value will be used in the first line of the

program, enter it into the X-register before starting the program. If it

will be used later, you can store it (with O) into a storage

register, and recall it (with a programmed l) within the

program.

70 Section 6: Programming Basics

This is the method used above, where h was placed in the X-register

before running the program. No v instruction is necessary

because program execution (here: ´A) both terminates digit

entry and enables the stack lift. The above program then multiplied

the contents of the X-register (h) by 2.

The presence of the stack even makes it possible to load more than

one variable prior to running a program. Keeping in mind how the

stack moves with subsequent calculations and how the stack can be

manipulated (as with ®), it is possible to write a program to use

variables which have been keyed into the X-, Y-, Z-, and T-registers.

2. Direct entry. Enter the data as needed as the program runs. Write a

¦ (run/stop) instruction into the program where needed so the

program will stop execution. Enter your data, then press ¦ to

restart the program.

Do not key variable data into the program itself. Any values that will vary

should be entered anew with each program execution.

Program Memory

At power-up (Continuous Memory reset), the HP-15C offers 322 bytes of

program memory and 21 storage registers. Most program steps

(instructions) use one byte, but some use two. The distribution of memory

capacity can be altered, as explained in appendix C. The maximum

attainable program memory is 448 bytes (with the permanent storage

registers—RI, R0, and R1 — remaining); maximum number of storage

registers is 67 (with no program memory).

Example. Mother's Kitchen, a canning

company, wants to package a ready-to-

eat spaghetti mix containing three

different cylindrical cans: one of

spaghetti sauce, one of grated cheese,

and one of meatballs. Mother's needs to

calculate the base areas, total surface

areas, and volumes of the three different

cans. It would also like to know, per

package, the total base area, surface

area, and volume.

 Section 6: Programming Basics 71

The program to calculate this information uses these formulas and data:

base area = r
2
.

volume = base area × height = r
2
h.

surface area = 2 base areas + side area = 2r
2
 + 2rh.

Radius, r Height, h Base Area Volume Surface Area

2.5cm 8.0 cm ? ? ?

4.0 10.5 ? ? ?

4.5 4.0 ? ? ?

TOTALS ? ? ?

Method:

1. Enter an r value into the calculator and save it for other calculations.

Calculate the base area (r
2
), store it for later use, and add the base

area to a register which will hold the sum of all base areas.

2. Enter h and calculate the volume (r
2
h). Add it to a register to hold

the sum of all volumes.

3. Recall r. Divide the volume by r and multiply by 2 to yield the side

area. Recall the base area, multiply by 2, and add to the side area to

yield the surface areas. Sum the surface areas in a register.

Do not enter the actual data while writing the program – just provide for

their entry. These values will vary and so will be entered before and/or

during each program run.

Key in the following program to solve the above problem. The display

shows line numbers and keycodes (the row and column location of a key),

which will be explained under Further Information.

Keystrokes Display

| ¥ 000- Sets calculator to Program

mode (PRGM displayed).

´ CLEAR M 000- Clears program memory. Starts

at line 000.

72 Section 6: Programming Basics

Keystrokes Display

´bA 001-42,21,11 Assigns this program the label

―A‖.

O 0 002- 44 0 Stores the contents of X-register

into R0. r must be in the X-

register before running the

program.

|x 003- 43 11 Squares the contents of the X-

register (which will be r).

|$ 004- 43 26

* 005- 20 r
2
, the BASE AREA of a can.

O 4 006- 44 4 Stores the BASE AREA in R4.

O + 1 007-44,40, 1 Keeps a sum of all BASE

AREAS in R1.

¦ 008- 31 Stops to display BASE AREA

and allow entry of the h value.

* 009- 20 Multiplies h by the BASE

AREA, giving VOLUME.

´ © 010- 42 31 Pauses briefly to display

VOLUME.

O + 2 011-44,40, 2 Keeps a sum of all can

VOLUMES in R2.

l 0 012- 45 0 Recalls r.

÷ 013- 10 Divides VOLUME by r.

2 014- 2

* 015- 20 2 rh, the SIDE AREA of a can.

l 4 016- 45 4 Recalls the BASE AREA of the

can.

2 017- 2 Multiplies base area by two (for

top and bottom). * 018- 20

 Section 6: Programming Basics 73

Keystrokes Display

+ 019– 40 SIDE AREA + BASE AREA

= SURFACE AREA.

O + 3 020–44,40, 3 Keeps a sum of all SURFACE

AREAS in R3.

| n 021– 43 32 Ends the program and returns

program memory to line 000.

Now, let's run the program:

Keystrokes Display

| ¥ Sets calculator to Run mode.

(PRGM cleared.)

´ CLEAR Q Clears all storage registers. The

display does not change.

2.5 2.5 Enter r of the first can.

´ A

(or: G A)

19.6350 Starts program A. BASE AREA

of first can.

(running flashes during

execution.)

8 8 Enter h of first can. Then restart

program.

¦ 157.0796 VOLUME of first can.

 164.9336 SURFACE AREA of first can.

4 4 Enter r of the second can.

¦ 50.2655 BASE AREA of second can.

10.5 10.5 Enter h of second can.

¦ 527.7876 VOLUME of second can.

 364.4247 SURFACE AREA of

second can.

4.5 4.5 Enter r of the third can.

¦ 63.6173 BASE AREA of third can.

74 Section 6: Programming Basics

Keystrokes Display

4 4 Enter h of third can.

¦ 254.4690 VOLUME of third can.

 240.3318 SURFACE AREA of third can.

l 1 133.5177 Sum of BASE AREAS.

l 2 939.3362 Sum of VOLUMES.

l 3 769.6902 Sum of SURFACE AREAS.

The preceding program illustrates the basic techniques of programming. It

also shows how data can be manipulated in Program and Run modes by

entering, storing, and recalling data (input and output) using v,

O, l, storage register arithmetic, and programmed stops.

Further Information

Program Instructions

Each digit, decimal point, and function key is considered an instruction

and is stored in one line of program memory. An instruction may include

prefixes (such as ´, O, t and b) and still occupy only one

line. Most instructions require one byte of program memory; however, some

require two. For a complete list of two-byte instructions, refer to

Appendix C.

Instruction Coding

Each key on the HP-15C keyboard – except for the digit keys 0 through

9 – is identified in Program mode by a two-digit ―keycode‖ that

corresponds to the key's position on the keyboard.

Instruction Code

O + 1 006-44,40, 1 Sixth program line.

´ e V XXX-42, 5,25 e is just ―5‖.

The first digit of a keycode refers to the row (1 to 4 from top to bottom),

and the second digit refers to the column (1, 2, 9, 0 from left to right).

Exception: the keycode for a digit key is simply that digit.

 Section 6: Programming Basics 75

Keycode 25: second row, fifth key.

Memory Configuration

Understanding memory configuration is not essential to your use of the

HP-15C. It is essential, however, for obtaining maximum efficiency in

memory and programming use. The more you program, the more useful this

knowledge will be. Memory configuration and allocation is thoroughly

explained in appendix C, Memory Allocation.

Should you ever get an Error 10, you have run up against limitations of the

HP-15C memory. If you learn how to reallocate memory, you can greatly

increase your ability to store information in the HP-15C.

The HP-15C memory consists of 67 registers (R0 to R65 and the Index

register) divided between data storage and programming/advanced function

capability. The initial configuration is:

 46 registers for both programming and the advanced functions

(_, f, the imaginary stack, and > functions). At seven

bytes of memory per register, this is worth 322 program bytes if no

memory is dedicated to advanced functions.

 21 registers for data storage (R0 to R9, R.0 to R.9, and the Index

register).

76 Section 6: Programming Basics

Memory is reallocated by telling the calculator which data storage register

shall be the highest data register; all other registers are left for programming

and advanced functions.

Keystrokes Display

60 ´ m %
*
 60.0000 R60 and below allocated to data

storage; five (R61 to R65) remain

for programming.

* The optional omission of the ´ keystroke after another prefix key is explained on page 78, Abbreviated

Key Sequences.

Initial Memory Configuration

 Section 6: Programming Basics 77

Keystrokes Display

1 ´ m % 1.0000 R1 and R0 allocated for data

storage; R2 to R65 available for

programming and advanced

functions.

19 ´ m% 19.0000 Original allocation: R19 (R.9) and

below for data storage; R20, to

R65 for programming and

advanced functions.
*

lm% 19.0000 Displays the current highest data

register.

The m and W (memory status) functions are described in detail in

appendix C.

Keep in mind that an error message will result (given the above memory

configuration) if

1. You try to address a register higher than R19 (R.9), which initially is

the highest register allocated to data storage (Error 3).

2. You have 322 occupied program bytes and try to load more program

lines (Error 4).

3. You try to run an advanced function with insufficient available

memory (Error 10).

Program Boundaries

End. Not every program needs to end with a n or ¦ instruction. If

you are at the end of occupied program memory, there is an automatic

n instruction, so you do not need to enter one. This can save you one

line of memory. On the other hand, a program can ―end‖ by simply

transferring execution to another routine using t (section 7).

Labels. Labels in a program (or subroutine) are markers telling the

calculator where to begin execution. Following an ´ label or G label

instruction, the calculator will search downward in program memory for the

* For memory allocation and indirect addressing, registers R.0 through R.9 are referred to as R10 through R19.

78 Section 6: Programming Basics

corresponding label. If need be, the search will wrap around at the end of

program memory and continue at line 000. When it encounters an

appropriate label, the search stops and execution begins.

If a label is encountered as part of a running program, it has no effect, that

is, execution simply continues. Therefore, you can label a subordinate

routine within a program (more on subroutines in section 9).

Since the calculator searches in only one direction from its present position,

it is possible (though not advisable) to use duplicate program labels.

Execution will begin at the first appropriately labeled line encountered.

If an ´ A entry starts the search

for ―A‖ here,

it then proceeds downward through

memory, wraps around to line 000,

and stops at label ―A‖. Execution then

starts and continues (ignoring any

other labels) until a halt instruction.

000-

(stop)

´bA

´b3

¦

end of memory

Unexpected Program Stops

Pressing Any Key. Pressing any key will halt program execution. It will

not halt in the middle of an operation. This instruction will be completed

before the program stops.

Error Stops. Program execution is immediately halted when the calculator

attempts an improper operation that results in an Error display.

To see the line number and keycode of the error-causing instruction (the

line at which the program stopped), press any one key to remove the Error

message, then switch to Program mode.

If the display is flashing when a program stops, an overflow condition exists

(page 61). Press − =, or | " 9 to stop the blinking.

Abbreviated Key Sequences

In certain cases, an ´ prefix you might expect to include in a key

sequence is not needed. The rule for using an abbreviated key sequence is:

the ´ prefix key is unnecessary after any other prefix key. (Page 19

contains a list of prefix keys.)

 Section 6: Programming Basics 79

For example, ´b´A becomes ´bA, ´m´%

becomes ´m%, and O´# becomes O#.

The removal of the ´ is not ambiguous because the ´-shifted function

is the only logical one in these cases. The keycodes for such instructions do

not include the extraneous ´ even if you do key it in.

User Mode

User mode is a convenience to save keystrokes when addressing (calling

up) programs for execution. Pressing ´U will exchange the primary

functions and ´-shifted functions of the A through E keys only. In

User mode (USER annunciator displayed):

´ shift

Primary

 A B C D E
¤ ' @ y ∕

| shift x
2
 LN LOG  

Press | U again to deactivate User mode.

Polynomial Expressions and Horner's Method

Some expressions, such as polynomials, use the same variable several times

for their solution. For example, the expression

f(x) = Ax
4
 + Bx

3
 + Cx

2
 + Dx + E

uses the variable x four different times. A program to solve such an

equation could repeatedly recall a stored copy of x from a storage register.

A shorter programming method, however, would be to use a stack which

has been filled with the constant (refer to Loading the Stack with a

Constant, page 41).

Horner's Method is a useful means of rearranging polynomial expressions to

cut calculation steps and calculation time. It is especially expedient in

_ and f, two rather long-running functions that use subroutines.

This method involves rewriting a polynomial expression in a nested fashion

to eliminate exponents greater than 1:

Ax
4
+ Bx

3
 + Cx

2
+

Dx + E

(Ax
3
 + Bx

2
 + Cx + D)x + E

((Ax
2
 + Bx + C)x + D)x + E

(((Ax + B)x + C)x + D)x + E

80 Section 6: Programming Basics

Example: Write a program for 5x
4
 + 2x

3
 as (((5x + 2)x)x)x, then evaluate

for x = 7

Keystrokes Display

| ¥ 000- Assumes position in memory

is line 000. If it is not, clear

program memory.

´ b B 001-42,21,12

5 002- 5

* 003- 20 5x.

2 004- 2

+ 005- 40 5x + 2.

* 006- 20 (5x + 2)x.

* 007- 20 (5x + 2)x
2
.

* 008- 20 (5x + 2)x
3
.

| n 009- 43 32

| ¥
 Returns to Run mode, Prior

result remains in display.

7 v v

v

7.0000 Loads the stack (X-, Y-, Z-,

and T-registers) with 7.

´ B 12,691.0000

Nonprogrammable Functions

When the calculator is in Program mode, almost every function on the

keyboard can be recorded as an instruction in program memory. The

following functions cannot be stored as instructions in program memory.

´ CLEAR u | ‚ Â
´ CLEAR M | W −
´ % | ¥ =/.
´ U t “ nnn =/­

 Section 6: Programming Basics 81

Problems

 1. The village of Sonance has installed a 12-o'clock whistle in the

firehouse steeple. The sound level at the firehouse door, 3.2 meters

from the whistle, is 138 decibels. Write a program to find the sound

level at various distances from the whistle.

 Use the equation L = L0 – 20 log (r/r0), where: L0 is the known sound

level (138 db) at a point near the source,

r0 is the distance of that point from the source (3.2 m), L is the

unknown sound level at a second point, and r is the distance of the

second point from the source in meters.

 What is the sound level at 3 km from the source (r = 3 km)?

 A possible keystroke sequence is:

|¥ ´bC 3.2 ÷ |o 20 * “ 138

+ |n |¥ taking 15 program lines and 15 bytes of

memory. This problem can be solved in a more general way by

removing the specific values 3.2 and 138 from the program, and

instead recalling the L0 and r0 values from storage registers; or by

removing 3.2 and 138 and loading L0, r, and r0 into the stack before

execution: L0 v r v r0.

 (Answer: for r = 3 km, L = 78.5606 db.)

 2. A "typical large" tomato weighs about 200 grams, of which about

188 g (94%) are water. A tomato grower is trying to produce

tomatoes of lower percentage water. Write a program to calculate the

percent change in water content of a given tomato compared to the

typical tomato. Use a programmed stop to enter the water weight of

the new tomato.

 What is the percent change in water content for a 230 g tomato of

which 205 g are water?

 A possible keystroke sequence is:

´bÁ .94 v ¦ (enter water weight of new tomato)

v ¦ (enter total weight of new tomato) ÷ |∆

|n taking 11 program lines and 11 bytes of memory.

 (Answer: for the 230 g tomato above, the percent change in percent

water weight is -5.1804%.)

82

Section 7

Program Editing

There are many reasons to modify a program after you've already stored it:

you might want to add or delete an instruction (like O, ©, or

¦), or you might even find some errors! The HP-15C is equipped with

several editing features to make this process as easy as possible.

The Mechanics

Making a program modification of any kind involves two steps: moving to

the proper line (the location of the needed change) and making the

deletion(s) and/or insertion(s).

Moving to a Line in Program Memory

The Go To (t) Instruction. The sequence t “ nnn will move

program memory to line number nnn, whether pressed in Run mode or

Program mode (PRGM displayed). This is not a programmable sequence; it

is for manually finding a specific position in program memory. The line

number must be a three-digit number satisfying 000 ≤ nnn ≤ 448.

The Single Step (Â) Instruction. To move only one line at a time

forward through program memory, press Â (single step). This function

is not programmable.

In Program mode: Â will move the memory position forward one line

and display that instruction. The instruction is not executed. If you hold the

key down, the calculator will continuously scroll through the lines in

program memory.

In Run mode: Â will display the current program line while the key is

held down. When the key is released, the current instruction is executed, the

result displayed, and the calculator steps forward to the next program line to

be executed.

 Section 7: Program Editing 83

The Back Step (‚) Instruction. To move one line backwards in

program memory, press ‚ (back step) in Program or Run mode. This

function is not programmable. ‚ will scroll (with the key held down) in

Program mode. Program instructions are not executed.

Deleting Program Lines

Deletions of program instructions are made with − (back arrow) in

Program mode. Move to the line you want to delete, then press −. Any

remaining following lines will be renumbered to stay in sequence.

Pressing − in Run mode does not affect program memory, but is used for

display clearing. (Refer to page 21.)

Inserting Program Lines

Additions to a program are made by moving to the line preceding the point

of insertion. Any instruction you key in will be added following the line

currently in the display. To alter an instruction, first delete it, then add the

new version.

Examples

Let's refer back to the can volume program on page 71 in section 6 and

make a few changes in the instructions. (The can program as listed below is

assumed to be in memory starting on line 001.)

Deletions: If we don't need the summed base area, volume, and surface area

values, we can delete the storage register additions (lines 007, 011, and

020).

Changes: To eliminate the need to stop the program to enter the height

value (h), change the ¦ instruction to a l 1 instruction (because of

the above deletions, R1 is no longer being used) and store h in R1 before

running the program. To clean things up, let's also alter O 4 (line 006)

to O 2 and l 4 (old line 016) to l 2, since we are no longer

using R2 and R3.

The editing process is diagrammed on the next page.

84 Section 7: Program Editing

Let's start at the end of the program and work backwards. In this way, deletions

will not change the line numbers of the preceding lines in the program.

Keystrokes Display

| ¥ 000- Program mode. (Assumes
position is at line 000.)

t “ 020
(or use Â)

020-44,40, 3 Moves position to line 020
(instruction O + 3.)

 Section 7: Program Editing 85

Keystrokes Display

− 019- 40 Line 020 deleted.

| ‚ (hold) 016- 45 4 The next line to edit is line
016 (l 4).

− 015- 20 Line 016 deleted.

l 2 016- 45 2 Line 016 changed to l 2.

t “ 011
(or hold ‚)

011-44,40, 2 Moves to line 011 (O+
2).

− 010- 42 31 Line 011 deleted.

| ‚ (hold) 008- 31 Stop! (Single-stepping
backwards to line 008:
¦.)

− 007-44,40, 1 ¦ deleted.

l 1 008- 45 1 Line 008 changed to l 1.

| ‚ 007-44,40, 1 Back-step to line 007.

− 006- 44 4 Line 007 (O+ 1)
deleted.

− 005- 20 Line 006 (O 4) deleted.

O 2 006- 44 2 Changed to O 2.

The replacement of a line proceeds like this:

Further Information

Single-Step Operations

Single-Step Program Execution. If you want to check the contents of a

program or the location of an instruction, you can single step through the

program in Program mode. If, on the other hand, running the program

produces an error, or you suspect that a portion of the program is faulty,

86 Section 7: Program Editing

you can check the program by executing it stepwise. This is done by

pressing Â in Run mode.

Keystrokes Display

| ¥ Run mode.

´ CLEAR Q Clear storage registers.

t A Move to first line of program
A.

8 O 1 8.0000 Store a can height.

2.5 2.5 Enter a can radius.

Â (hold) 00142,21,11 Keycode for line 001 (label).

 (release) 2.5000 Result of executing line 001.

Â 002 44 0 t 0.

 2.5000 Result.

Â 003 43 11 | x.

 6.2500 Result.

Â 004 43 26 | $.

 3.1416 Result.

Â 005 20 *

 19.6350 Result: the base area of the can.

Wrapping. Â will not move program position into ―unoccupied‖

program territory. Instead, the calculator will ―wrap around‖ to line 000. (In

Run mode, Â will perform any instructions at the end of program

memory, such as n, t or G.)

Line Position

Recall that the calculator's position in program memory does not change

when it is shut off or Program/Run modes are changed. Upon returning to

Program mode, the calculator line position will be where you left it. (If you

executed a program ending with n, the position will be at line 000.)

Therefore, if the calculator is left on and shuts itself off, you need only turn

it on and switch to Program mode (the calculator always "wakes up" in Run

mode) to be back where you were.

 Section 7: Program Editing 87

Insertions and Deletions

After an insertion, the display will show the instruction you just added.

After a deletion, the display will show the line prior to the deleted (now

nonexistent) one.

If all space available in memory is occupied, the calculator will not accept

any program instruction insertions and Error 4 will be displayed.

Initializing Calculator Status

The contents of storage registers and the status of calculator settings will

affect a program if the program uses those registers or depends on a certain

status setting. If the current status is incorrect for the program being run,

you will get incorrect results. Therefore, it is wise to clear registers and set

relevant modes either just prior to running a program or within the program

itself. A self-initializing program is more mistake-proof—but it also uses

more program lines.

Calculator-initializing functions are: ´ CLEAR ∑, ´ CLEAR

M, ´ CLEAR Q, | D, | R, | g, |

F, and | ".

Problems

It is good programming technique to avoid using identical program labels.

(This shouldn't be hard, since the HP-15C provides 25 different labels.) To

ensure against duplication of labels, you can clear program memory first.

1. The following program is used by the manager of a savings and loan

company to compute the future values of savings accounts according

to the formula FV = PV (l + i)
n
, where FV is future value, PV is

present value, i is the periodic interest rate, and n is the number of

periods. Enter PV first (into the Y-register) and n second (into the X-

register) before executing the program. Given is an annual interest

rate of 7.5% (so i = 0.075).

88 Section 7: Program Editing

Keystrokes Display

´ b . 1 001-42,21,.1

´ •2 002-42, 7, 2

1 003- 1

. 004- 48

0 005- 0 Interest.

7 006- 7

5 007- 5

® 008- 34

y 009- 14 (1 + i)
n

* 010- 20 PV (1 + i)
n

| n 011- 43 32

 Load the program and find the future value of $1,000 invested for 5

years; of $2,300 invested for 4 years. Remember to use G to run

a program with a digit label. (Answers: $1,435.63; $3,071.58.)

 Alter the program to make the annual interest rate 8.0%.

 Using the edited program, find the future value of $500 invested for

4 years; of $2,000 invested for 10 years. (Answers: $680.24;

$4,317.85.)

2. Create a program to calculate the length of a chord ℓ subtended by an
angle  (in degrees) on a circle of radius r, according to the equation

ℓ=2r sin .
2

θ

Find ℓ when θ = 30° and r = 25.

(Answer: 12.9410. A possible program is: ´bA |D
´•4 2 * ® 2 ÷ [* |n). (Assumes

 in Y-register and r in X-register when program is run.)

 Section 7: Program Editing 89

Make any necessary modifications in the program to also find and display s,

the length of the circular arc cut by θ (in radians), according to the equation

s = r θ.

Complete the following table:

θ r ℓ s

45° 50 ? ?

90° 100 ? ?

270° 100 ? ?

(Answers: 38.2683 and 39.2699; 141.4214 and 157.0796; 141.4214 and

471.2389.

A possible new sequence is:

´bA |D ´•4 O0 2* ® O1 2÷
[* ´© ´© l0 l1 ´r *
|n).

90

Section 8

Program Branching

and Controls

Although the instructions in a program are normally executed sequentially,

it is often desirable to transfer execution to a part of the program other than

the next line. Branching in the HP-15C may be simple, or it may depend on

a certain condition. By branching to a previous line, it is possible to execute

part of a program more than once – a process called looping.

The Mechanics

Branching

The Go To (t) Instruction. Simple branching – that is, unconditional

branching – is carried out with the instruction t label. In a running

program, t will transfer execution to the next appropriately labeled

program or routine (not to a line number).

The calculator searches forward in memory, wrapping around through line

000 if necessary, and resumes execution at the first line containing the

proper label.

Looping. If a t instruction specifies a label at a lower-numbered line

(that is, a prior line), the series of instructions between the t and the

label will be executed repeatedly – possibly indefinitely. The continuation

 Section 8: Program Branching and Controls 91

of this loop can be controlled by a conditional branch, an ¦ instruction

(written into the loop), or simply by pressing any key during execution

(which stops the program).

Conditional Tests

Another way to alter the sequence of program execution is by a conditional

test, a true/false test which compares the number in the X-register either to

zero or to the number in the Y-register. The HP-15C provides 12 different

tests, two explicit on the keyboard and 10 others accessible using |

T n.
*

1. Direct: | £ and | ~ .

2. Indirect: | T n.

n Test n Test

0 x ≠ 0 5 x = y

1 x > 0 6 x ≠ y

2 x < 0 7 x > y

3 x ≥ 0 8 x < y

4 x ≤ 0 9 x ≥ y

* Four of the conditional tests can also be used for complex values, as explained in section 11 on page 132.

92 Section 8: Program Branching and Controls

Following a conditional test, program execution follows the "Do if True"

Rule: it proceeds sequentially if the condition is true, and it skips one

instruction if the condition is false. A t instruction is often placed right

after a conditional test, making it a conditional branch; that is, the t

branch is executed only if the test condition is met.

Flags

Another conditional test for programming is a flag test. A flag is a status

indicator that is either set (= true) or clear (= false). Again, execution

follows the "Do if True" Rule: it proceeds sequentially if the flag is set, and

skips one line if the flag is clear.

The HP-15C has eight user flags, numbered 0 to 7, and two system flags,

numbered 8 (Complex mode) and 9 (overflow condition). The system flags

are discussed later in this section. All flags can be set, cleared, and tested as

follows:

 | F n will set flag number n (0 to 9).

 | " n will clear flag number n.

 | ? n will check if flag n is set.

A flag n that has been set remains set until it is cleared either by a "

n instruction or by clearing (resetting) Continuous Memory.

 Section 8: Program Branching and Controls 93

Examples

Example: Branching and Looping

A radiobiology lab wants to predict the

diminishing radioactivity of a test amount of
131

I, a radioisotope. Write a program to figure

the radioactivity at 3-day intervals until a

given limit is reached. The formula for Nt, the

amount of radioisotope remaining after t days,

is

Nt = No (2
-t/k

),

where k = 8 days, the half-life of
131

I, and N0 is the initial amount.

The following program uses a loop to calculate the number of millicuries

(mci) of isotope theoretically remaining at 3-day intervals of decay.

Included is a conditional test to check the result and end the program when

radioactivity has fallen to a given value (a limit).

The program assumes t1 – the first day of measurement – is stored in R0, N0

– the initial amount of isotope – is stored in R1, and the limit value for

radioactivity is stored in R2.

Keystrokes Display

| ¥ 000- Program mode.

´ CLEAR M 000- (Optional.)

´ b A 001-42,21,11 Each loop returns to this
line.

l 0 002- 45 0 Recalls current t which
changes with each loop.

´ © 003- 42 31 Pauses to display t.

8 004- 8 k

÷ 005- 10

“ 006- 16 –t/k.

2 007- 2

® 008- 34

Y
 009- 14 2

–t/k
.

94 Section 8: Program Branching and Controls

Keystrokes Display

l * 1 010-45,20, 1 Recall multiplication with the
contents of R1 (N0), yielding Nt,
the mci of

131
I remaining after t

days

´© 011- 42 31 Pauses to display Nt.

l 2 012- 45 2 Recalls limit value to X-register.

| T 9 013-43,30, 9 x ≥ y ? Tests whether limit value
(in X) meets or exceeds Nt
(in Y).

| n 014- 43 32 If so, program ends.

3 015- 3 If not, program continues.

O+ 0 016-44,40, 0 Adds 3 days to t in R0.

tA 017- 22 11 Go to ―A‖ and repeat execution
to find a new Nt from a new t.

Notice that without lines 012 to 014, the loop would run indefinitely (until

stopped from the keyboard).

Let's run the program, using t1 = 2 days, N0 = 100 mci, and a limit value of

half of N0 (50 mci).

Keystrokes Display

| ¥ Run mode (display will vary).

2 O 0 2.0000 t1.

100 O 1 100.0000 N0.

50 O 2 50.0000 Limit value for Nt.

´A 2.0000 t1.

 84.0896 N1.

 5.0000 t2.

 64.8420 N2.

 8.0000 t3.

 50.0000 N3.

 50.0000 Nt limit; program ends.

 Section 8: Program Branching and Controls 95

Example: Flags

Calculations on debts or investments can be calculated in two ways: for

payments made in advance (at the beginning of a given period) and for

payments made in arrears (at the end of a given period). If you write a

program to calculate the value (or ―present value‖) of a debt or investment

with periodic interest and periodic payments, you can use a flag as a status

indicator to tell the program whether to assume payments are made in

advance or payments are made in arrears.

Suppose you are planning the payment of your child's future college tuition.

You expect the cost to be about $3,000/year or about $250/month. If you

wanted to withdraw the monthly payments from a bank account yielding

6% per year, compounded monthly (which equals 0.5% per month), how

much must you deposit in the account at the start of the college years to

fund monthly payments for the next 4 years?

The formula is

)(1
)(11

i
i

i
 PV

n












 




if payments are to be made

each month in advance,

and the formula is











 




i

i
 PV

n)(11
 if payments are to be made

each month in arrears.

V is the total value of the deposit you must make in the account;

P is the size of the periodic payment you will draw from the account;

i is the periodic interest rate (here: ―periodic‖ means monthly, since interest

is compounded monthly); and

n is the number of compounding periods (months).

The following program allows for either payment mode. It assumes that,

before the program is run, P is in the Z-register, n is in the Y-register, and i

is in the X-register.

96 Section 8: Program Branching and Controls

Keystrokes Display

| ¥ 000- Program mode.

´ bB 001-42,21,12 Start at "B" if payments to be
made at the beginning.

| " 0 002-43, 5, 0 Flag 0 clear (false); indicates
advance payments.

t 1 003- 22 1 Go to main routine.

´ b E 004-42,21,15 Start at "E" if payments to be
made at the end.

| F 0 005-43, 4, 0 Flag 0 set (true); indicates
payment in arrears.

´ b 1 006-42,21, 1 Routine 1 (main routine).

O1 007- 44 1 Stores i (from X-register).

1 008- 1

+ 009- 40 (1+i).

® 010- 34 Puts n in X; (l + i) in Y.

“ 011- 16 – n.

y 012- 14 (1 + i)
-n

.

“ 013- 16 – (1 + i)
-n

.

1 014- 1

+ 015- 40 1 – (1 + i)
-n

.

l ÷ 1 016-45,10, 1 Recall division with R1 (i) to
get [l– (l + i)

-n
]/i.

* 017- 20 Multiplies quantity by P.

| ? 0 018-43, 6, 0 Flag 0 set?

| n 019- 43 32 End of calculation if flag 0 set
(for payments in arrears).

l 1 020- 45 1 Recalls i.

1 021- 1

+ 022- 40 (1 + i).

* 023- 20 Multiplies quantity by final
term.

| n 024- 43 32 End of calculation if flag 0
clear.

 Section 8: Program Branching and Controls 97

Now run the program to find the total amount needed in an account from

which you want to take $250/month for 48 months. Enter the periodic

interest rate as a decimal fraction, that is, 0.005 per month. First find the

sum needed if payments will be made at the beginning of the month

(payments in advance), then calculate the sum needed if payments will be

made at the end of the month (in arrears).

Keystrokes Display

|¥ Set to Run mode.

250 v 250.0000 Monthly payment.

48 v 48.0000 Payment periods (4 years × 12

months).

.005 0.005 Monthly interest rate as a

decimal fraction.

´ B 10,698.3049 Deposit necessary for

payments to be made in

advance.

(Repeat stack entries.)

´ E 10,645.0795 Deposit necessary for payment to

be made in arrears. (The

difference between this deposit

and the tuition cost ($12,000)

represents interest earned on the

deposit!)

Further Information

Go to

In contrast to the nonprogrammable sequence t “ nnn, the

programmable sequence t label cannot be used to branch to a line

number, but only to program label (a line containing ´ b label).
*

Execution continues from the point of the new label, and does not return to

the original routine unless given another t instruction.

t label can also be used in Run mode (that is, from the keyboard) to

move to a labeled position in program memory. No execution occurs.

* It is possible to branch under program control to a particular line number by using indirect addressing,

discussed in section 10.

98 Section 8: Program Branching and Controls

Looping

Looping is an application of branching which uses a t instruction to

repeat a portion of the program. A loop can continue indefinitely, or may be

conditional. A loop is frequently used to repeat a calculation with different

variables. At the same time, a counter, which increments with each loop,

may be included to keep track of loop iterations. This counter can then be

checked with a conditional test to determine when to exit the loop. (This is

shown in the example on page 112.)

Conditional Branching

There are two general applications for conditional branching. One is to

control loops, as explained above. A conditional test can check for either a

certain calculated value or a certain loop count.

The other major use is to test for options and pursue one. For example, if a

salesperson made a variable commission depending on the amount of sale,

you could write a program which takes the amount of sale, compares it to a

test value, and then calculates a specific commission depending on whether

the sale is less than or greater than the test value.

Tests. A conditional test takes what is in the X-register (“x”) and compares

it either to zero (such as ~) or to “y”, that is, what is in the Y-register

(such as £). For an x:y comparison, therefore, you must have the x- and

y-values juxtaposed in the X- and Y-registers. This might require that you

store a test value and then recall it (bringing it into the X-register). Or, the

value might be in the stack and be moved, as necessary, using ®,),

or (.

Tests With Complex Numbers and Matrix Descriptors. Four of the

conditional tests also work with complex numbers and matrix descriptors:

~, T 0 (x≠ 0), T 5 (x = y), and T 6 (x≠ y). Refer to

sections 11 and 12 for more information.

Flags

As a conditional test can be used to pick an option by comparing

two numbers in a program, a flag can be used to pick an option externally.

Usually, a flag is set or cleared first thing in a program by choosing a

different starting point (using different labels) depending on the condition

or mode you want (refer to the example on page 95).

 Section 8: Program Branching and Controls 99

In this way, a program can accommodate two different modes of input, such

as degrees and radians, and make the correct calculation for the mode

chosen. You set a flag if a conversion needs to be made, for instance, and

clear it if no conversion is needed.

Suppose you had an equation requiring temperature input in degrees Kelvin,

although sometimes your data might be in degrees Celsius. You could use a

program with a flag to allow either a Kelvin or Celsius input. In part, such a

program might include:

´ bC Start program at ―C‖ for degrees Celsius.

| " 7 Flag 7 cleared (=false).

t 1

´ b Á Start program at ―D‖ for degrees Kelvin.

| F 7 Flag 7 set (=true).

´ b 1 (Assuming temperature in X-register.)

| ? 7 Checks for flag 7 (checks for Celsius or Kelvin

input).

t 2 If set (Kelvin input), goes to a later routine, skipping

the next few instructions.

2 If cleared (Celsius input), adds 273 to the

7 value in the X-register, since °K = °C + 273.

3

+

´ b 2 Calculation continues for both modes.

⋮

The System Flags: Flags 8 and 9

Flag 8. Setting flag 8 will activate Complex mode (described in section 11),

turning on the C annunciator. If another method is used to activate Complex

mode, flag 8 will automatically be set. Complex mode is deactivated only

by clearing flag 8; flag 8 is cleared in the same manner as the other flags.

100 Section 8: Program Branching and Controls

Flag 9. An overflow condition (described on page 61) automatically sets

flag 9. Flag 9 causes the display to blink or, if a program is running, waits

until execution is complete and then starts blinking the display.

Flag 9 may be cleared in three ways:

 Press | " 9 (the common procedure for clearing flags).

 Press −. This will only clear flag 9 and stop the blinking—it will

not clear the display.

 Turn the calculator off. (Flag 9 is not cleared if the calculator turns

itself off.)

If you set flag 9 manually (F 9), it causes the display to blink irrespective

of the overflow status of the calculator. As usual, a program will run to

completion before the display starts blinking. Therefore, flag 9 can be used

as a programming tool to provide a visual signal for a selected condition.

101

Section 9

Subroutines

When the same set of instructions needs to be used at more than one point

in a program, memory space can be conserved by storing those instructions

as a single subroutine.

The Mechanics

Go To Subroutine and Return

The G (go to subroutine) instruction is executed in the same way as the

t branch, with one major difference: it establishes a pending return

condition. G label, like t label,
*
 transfers program execution to the

line with the corresponding label (A to E, 0 to 9 or .0 to .9). However,

execution then continues until the first subsequent n instruction is

encountered – at which point execution transfers back to the instruction

immediately following the last G instruction, and continues on from

there.

 Subroutine Execution

 ´bA ´b.1

 G.1

 |n |n

 END RETURN

Execution transfers to line 000

and halts.

Execution transfers back to

original routine after
G.1

* A G or t instruction followed by a letter label is an abbreviated key sequence (no ´

necessary). Abbreviated key sequences are explained on page 78.

102 Section 9: Subroutines

Subroutine Limits

A subroutine can call up another subroutine, and that subroutine can call up

yet another subroutine. This ―subroutine nesting‖—the execution of a

subroutine within a subroutine—is limited to stack of subroutines seven

levels deep (this does not count the main program level). The operation of

nested subroutines is as shown below:

Main Program

bA b1 b2 b3 b4

G1 G3

 G2 G4

n n n n n

End

Examples

Example: Write a program to

calculate the slope of the secant line

joining points (x1, y1) and (x2, y2) on

the graph shown, where y = x
2
 - sin x

(given x in radians).

The secant slope is:

12

1
2

12
2

2

12

12)sin ()sin (
or ,

xx

xxxx

xx

yy









The solution requires that the equation for y be evaluated twice—once for y1

and once for y2, given the data input for x1 and x2. Since the same

calculation must be made for different values, it will save program space to

call a subroutine to calculate y.

The following program assumes that x1 has been entered into the Y-register

and x2 into the X-register.

 Section 9: Subroutines 103

MAIN PROGRAM

|¥

´ CLEAR M (Not programmable.)

000-

001- ´ b 9 Start main program.

002- | R Radians mode.

003- O 0 Stores x2 in R0.

004- ® Brings x1 into X; x2 into Y.

005- O - 0 (x2 - x1) in R0.

006- G .3 Transfer to subroutine ―.3‖ with x1.

 Return from subroutine ―.3‖.

007- “ - y1.

008- ® Brings x2 into X-register.

009- G .3 Transfer to subroutine with x2.

 Return from subroutine ―.3‖.

010- + y2 - y1.

011- l ÷ 0 Recalls (x2 – x1) from R0 and

calculates (y2 - y1)/(x2 - x1).

012- | n Program end (return to line 000).

SUBROUTINE

013- ´ b .3 Start subroutine .3.

014- | x x
2
.

015- |
 K Recall x.

016- [sin x.

017- - x
2
 – sin x, which equals y.

018- | n Return to origin in main program.

Calculate the slope for the following values of x1 and x2: 0.52, 1.25; -1, 1;

0.81, 0.98. Remember to use G 9 (rather than ´ 9) when addressing a

routine with a digit label.

Answers: 1.1507; -0.8415; 1.1652.

104 Section 9: Subroutines

Example: Nesting. The following subroutine, labeled ―.4‖, calculates the

value of the expression 2222 tzyx  as part of a larger calculation in a

larger program. The subroutine calls upon another subroutine (a nested

subroutine), labeled ―.5‖, to do the repetitive squaring.

The program is executed after placing the variables t, z, y, and x into the T-,

Z-, Y-, and X-registers.

Keystrokes

´ b.4 Start of main

 subroutine.

| x x
2
.

G.5 Calculates y
2
 and

 x
2
 + y

2
.

G.5  Calculates z
2
 and

 X
2
 + y

2
 + z

2
.

G.5  Calculates t
2
 and

 x
2
 + y

2
 + z

2
 + t

2
.

¤  2

2

2

2
t zyx 

| n End of main subroutine;

 returns to main program.

´ b.5 Start of nested

 subroutine.

®

| x Calculates a square and

+ adds it to current sum of squares.

| n End of nested sub-routine; returns

to main subroutine.

If you run the subroutine (with its nested subroutine) alone using x = 4.3,

y = 7.9, z = 1.3, and t = 8.0, the answer you get upon pressing G.4 is

12.1074.

 Section 9: Subroutines 105

Further Information

The Subroutine Return

The pending return condition means that the n instruction occurring

subsequent to a G instruction causes a return to the line following the

G rather than a return to line 000. This is what makes a subroutine

useful and reuseable in different parts of a program: it will always return

execution to where it branched from, even as that point changes. The only

difference between using a G branch and a t branch is the transfer

of execution after a n.

Nested Subroutines

If you attempt to call a subroutine that is nested more than seven levels

deep, the calculator will halt and display Error 5 when it encounters the

G instruction at the eighth level.

Note that there is no limitation (other than memory size) on the number of

nonnested subroutines or sets of nested subroutines that you may use.

106

Section 10

The Index Register

and Loop Control

The Index register (RI) is a powerful tool in advanced programming of the

HP-15C. In addition to storage and recall of data the Index register can use

an index number to:

 Count and control loops.

 Indirectly address storage registers, including those beyond R.9

(R19).

 Indirectly branch to program line numbers, as well as to labels.

 Indirectly control the display format.

 Indirectly control flag operations.

The V and % Keys

Direct Versus Indirect Data Storage With the Index Register

The Index register is a data storage register that can be used directly, with

V, or indirectly, with %.
*
 The difference is important to note:

 V %

The V function uses the

number itself in the Index

register.

The % function uses the absolute

value of the integer portion of the

number in the Index register to

address another data storage

register. This is called indirect

addressing.

* Note that the matrix functions and complex functions use the V and % keys also, but for different

purposes. Refer to sections 11 and 12 for their usage.

 Section 10: The Index Register and Loop Control 107

Indirect Program Control With the Index Register

The V key is used for all forms of indirect program control other than

indirect register addressing. Hence, V (not %) is used for indirect

program branching, indirect display format control, and indirect flag

control.

Program Loop Control

Program loop counting and control can be carried out in the HP-15C by any

storage register: R0 through R9, R.0 through R.9, or the Index register (V).

Loop control can also be carried out indirectly with %.

The Mechanics

Both V and % can be used in abbreviated key sequences, omitting the

preceding ´ prefix (as explained on page 78).

Index Register Storage and Recall

Direct. O V and l V. Storage and recall between the X-

register and the Index register operate in the same manner as with other data

storage registers (page 42).

Indirect. O (or l) % stores into (or recalls from) the data storage

register whose number is addressed by the integer portion of the value (0 to

65) in the Index register. See the table below and on the next page.

Indirect Addressing

If RI contains: % will address:
t V or G V will

transfer to:*

± 0 R0 ´ b 0

⋮ ⋮ ⋮

9 R9 ´ b 9

10 R.0 " " .0

11 R.1 " " .1

⋮ ⋮ ⋮

19 R.9 ´ b .9

20 R20 " " A

*For RI  0 only.

(Continued on next page.)

108 Section 10: The Index Register and Loop Control

Indirect Addressing

If RI contains: % will address:
t V or GV will

transfer to:*

21 R21 ´ b B

22 R22 " " C

23 R23 " " Á

24 R24 " " E

⋮ ⋮ —

65 R65 —

*For RI  0 only.

Index Register Arithmetic

Direct. O or l { + , -, *, ÷ } V. Storage or recall

arithmetic operates with the Index register in the same manner as upon

other data storage registers (page 43).

Indirect. O or l { + , -, *, ÷ } % carries out storage

or recall arithmetic with the contents of the data storage register addressed

by the integer portion of the number (0 to 65) in the Index register. See the

above table.

Exchanging the X-Register

Direct. ´ X V exchanges contents between the X-register and the

Index register. (Works the same as X n does with registers 0 through .9.)

Indirect. ´ X % exchanges contents between the X-register and the

data storage register addressed by the number (0 to 65) in the Index register.

See the above table.

Indirect Branching With V

The V key—but not the % key—can be used for indirect branching

(tV) and subroutine calls (GV). (Only the integer portion of

the number in RI is used.) (% is only used for indirect addressing of

storage registers).

 Section 10: The Index Register and Loop Control 109

To Labels. If the RI value is positive, t V and G V will

transfer execution to the label which corresponds to the number in the Index

register (see the above table).

For instance, if the Index register contains 20.00500, then a tV

instruction will transfer program execution to ´b A. See the chart

on page 107.

To Line numbers. If the RI value is negative, tV causes branching

to that line number (using the absolute value of the integer portion of the

value in RI).

For instance, if RI contains –20.00500, then a tV instruction will

transfer program execution to program line 020.

Indirect Flag Control With V

F V, " V, or ? V will set, clear, or test the flag (0 to 9)

specified in RI (by the magnitude of the integer portion).

Indirect Display Format Control With V

´ • V, ´ i V, and ´ ^ V will format the

display in their customary manner (refer to pages 58–59), using the number

in RI (integer part only) for n, which must be from 0 to 9.
*

Loop Control With Counters: I and e

The I (increment and skip if greater than) and e (decrement and

skip if less than or equal to) functions control loop execution by referencing

and altering a loop control number in a given register. Program execution

(skipping a line or not) then depends on that number.

The key sequence is ´ { I, e } register number. This number is

0 to 9, .0 to .9, V ,or %.

The Loop Control Number. The format of the loop control number is:

nnnnn.xxxyy, where

±nnnnn is the current counter value,

xxx is the test (goal) value, and

yy Is the increment of decrement value

* Except when using f (section 14)

110 Section 10: The Index Register and Loop Control

For example, the number 0.05002 in a storage register represents:

nnnnn x x x y y

 0.0 5 0 0 2

Start count at zero. Count by twos.

Count up to 50.

I and e Operation. Each time a program encounters I or

e it increments or decrements nnnnn (the integer portion of the loop

control number), thereby keeping count of the loop iterations. It compares

nnnnn to xxx, the prescribed test value, and exits the loop by skipping the

next line if the loop counter (nnnnn) is either greater than (I) or less

than or equal to (e) the test value (xxx). The amount that nnnnn is

incremented or decremented is specified by yy.

With these functions (as opposed to the other conditional tests), the rule is

―Skip if True‖.

False (nnnnn  xxx) True (nnnnn > xxx)

 instruction

 ´IV

loop t. 1

 instruction exit loop

For I: given nnnnn.xxxyy, increment nnnnn to nnnnn + yy, compare

it to xxx, and skip the next program line if the new value satisfies nnnnn >

xxx. This allows you to exit a loop at this point when nnnnn becomes

greater than xxx.

 Section 10: The Index Register and Loop Control 111

False (nnnnn > xxx) True (nnnnn  xxx)

 instruction

 ´sV

loop t. 1

 Instruction exit loop

For e: given nnnnn.xxxyy, decrement nnnnn to nnnnn - yy, compare

it to xxx, and skip the next program line if the new value satisfies nnnnn ≤

xxx. This allows you to exit a loop at this point when nnnnn becomes less

than or equal to xxx.

For example, loop iterations will alter these control numbers as follows:

Iterations

Operation 0 1 2 3 4

I 0.00602 2.00602 4.00602 6.00602 8.00602

 (skip next
line)

e 6.00002 4.00002 2.00002 0.00002

 (skip next
line)

Examples

Examples: Register Operations

Storing and Recalling

Keystrokes Display

´ CLEAR Q Clears all storage registers.

12.3456 12.3456

O V 12.3456 Stores in RI.

7 ¤ 2.6458

O% 2.6458 Storage in R.2 by indirect addressing

(RI = 12.3456).

lV 12.3456 Recalls contents of RI.

112 Section 10: The Index Register and Loop Control

Keystrokes Display

l % 2.6458 Indirectly recalls contents of R.2.

´ X .2 2.6458 Check: same contents recalled by

directly addressing R.2.

Exchanging the X-Register

Keystrokes Display

´ X V 12.3456 Exchanges contents of RI and X-

register.

l V 2.6458 Present contents of RI.

´ X% 0.0000 Exchanges contents of R2 (which is

zero) with X.

l % 2.6458

´ X 2 2.6458 Check: directly address R2.

Storage Register Arithmetic

Keystrokes Display

10 O + V 10.0000 Adds 10 to RI.

l V 12.6458 New contents of RI (= old + 10).

| $ O ÷
%

3.1416 Divides contents of R.2 by .

l% 0.8422 New contents of R.2.

´ X.2 0.8422 Check: directly address R.2.

Example: Loop Control with e

Remember the program in section 8 which used a loop to calculate

radioactive decay? (Refer to page 93.) This program used a test condition (x

≥ y?) to exit the loop when the calculated result passed the given limit (50).

As we've seen in this section, there's another way to control loop execution:

through a stored loop counter that is monitored by the I or e

function.

 Section 10: The Index Register and Loop Control 113

Here is a revision of the original radioisotope decay program. This

time, we will limit the program to three executions of the loop rather

than setting a specific limit value. This example uses e with a

loop control number in R2 of

3.0 0 0 0 1.

 initial loop counter decrement value

 test (goal) value

Make the following changes to the program (assuming it is in memory). A

loop counter will be stored in R2 and a line number in the Index register.

Keystrokes Display

| ¥ 000- Program mode.

t“013 013-43,30, 9 The second of the two loop

test condition lines.

−− 011- 42 31 Delete lines 013 and 012.

´e 2 012-42, 5, 2 Add your loop counter

function (counter stored in

R2).

t V 013- 22 25 Go to given line number

(015).

Now when the loop counter (stored in R2) has reached zero, it will skip line

013 and go on to 014, the n instruction, thereby ending the program. If

the loop counter has not yet decreased to zero, execution continues with line

013. This branches to line 015 and continues the program and the looping.

To run the program, put t1 (day 1) in R0, N0 (initial isotope batch) in R1 the

loop counter in R2, and the line number for branching in the Index register.

Keystrokes Display

| ¥ Run mode.

2 O 0 2.00000 t1.

100 O 1 100.0000 N0.

3.000001 O 2 3.0000 Loop counter. (This
instruction could also be
programmed.)

114 Section 10: The Index Register and Loop Control

Keystrokes Display

15 “ O

V ´ A

-15.0000 Branch line number.

 2.0000 Running program loop counter

= 3.

 84.0896

 5.0000 Loop counter = 2.

 64.8420

 8.0000 Loop counter = 1.

 50.0000

 50.0000 Loop counter = 0; program ends.

Example: Display Format Control

The following program pauses and displays an example of • display

format for each possible decimal place. It utilizes a loop containing a s

instruction to automatically change the number of decimal places.

Keystrokes

|¥

´CLEAR M

´ b B

9 nnnnn = 9. Therefore, xxx = 0 and by default yy

= 1 (yy cannot be zero).

O V

´ b 0

´ • V

l V

´ © Displays current value of nnnnn.

´ e V Value in RI is decremented and tested. Skip a line

if nnnnn  test value.

t 0 Continue loop if nnnnn > test value (0).

| T 1 Tests whether value in display is greater than 0, so

loop will continue when nnnnn has reached 0 but

display still only shows 1.0.
t 0

| n

 Section 10: The Index Register and Loop Control 115

To display fixed point notation for all possible decimal places on the

HP-15C:

Keystrokes Display

| ¥ Run mode.

´ B 9.000000000

 8.00000000

 7.0000000

 6.000000

 5.00000

 4.0000

 3.000

 2.00

 1.0

 0. Display at ´©instruction.

 0. Display when program halts.

Further Information

Index Register Contents

Any value stored in the Index register can be referenced in three different

ways:

 Using V like any other storage register. The value in RI can be

manipulated as it is: stored, recalled, exchanged, added to, etc.

 Using V as a control number. The absolute value of the integer

portion in RI is a separate entity from the fractional portion. For indirect

branching, flag control, and display format control with V, only this

portion is used. For loop control, the fractional portion is also used, but

separately from the integer portion.
*

 Using % as a reference to the contents of another storage register.

The % key uses the indirect addressing system shown in the tables on

pages 107 and 108. (In turn, the contents of that second register may be

used as a loop control number, in the fashion described above.)

* This is also true for the value in any storage register used for indirect loop control.

116 Section 10: The Index Register and Loop Control

I and e

For the purpose of loop control, the integer portion (the counter value) of

the stored control number can be up to five digits long (nnnnn.xxxyy). The

counter value (nnnnn) is zero if not specified otherwise.

xxx, in the decimal portion of the control number, must be specified as a

three-digit number. (For example, ―5‖ must be ―005‖.) xxx is zero if not

specified otherwise. Whenever I or e is encountered, nnnnn is

compared internally to xxx, which represents the end level for incrementing

or decrementing.

yy must be specified as a two-digit number. yy cannot be zero, so if left (or

specified) as 00, the value for yy defaults to 1. The value nnnnn is altered

by the amount of yy each time the loop runs through I or e. Both

yy and xxx are reference values, which do not change with loop execution.

Indirect Display Control

While you can use the Index register to format the display manually (that is,

from the keyboard), this function is most commonly used in programming.

This capability is especially valuable for the f function, for which

accuracy can be stipulated by specifying the number of digits to be

displayed (as described in section 14).

There are, as usual, certain display limitations to keep in mind. Recall that

any display format function merely alters the number of decimal places to

which the display is rounded. In its memory, the calculator always retains a

number in scientific notation as a 10-digit mantissa with a two-digit

exponent.

The integer portion of the number in the Index register specifies the number

of decimal places to which the display is rounded. A number less than zero

defaults to zero (zero decimal places displayed in • format), while a

number greater than 9 defaults to 9 (9 decimal places displayed in •).*

* Note that in i and ^ format modes, the maximum display is a seven-digit mantissa

with a two-digit exponent. However, a format number greater than six (and less than or equal

to nine) will alter the decimal place at which rounding occurs. (Refer to page 58-59.)

 Section 10: The Index Register and Loop Control 117

An exception is in the case of f where the display format number in RI

may range from -6 to +9. (This is discussed in appendix E on page 247.) A

number less than zero will not affect the display format, but will affect

accuracy with this function.

118

Part lll

HP-15C

Advanced Functions

120

Section 11

Calculating With

Complex Numbers

The HP-15C enables you to calculate with complex numbers, that is,

numbers of the form

a + ib,

where a is the real part of the complex number,

b is the imaginary part of the complex number, and

1i .

As you will see, the beauty of calculating with the HP-15C in Complex

mode is that once the complex numbers are keyed in, most operations are

executed in the same manner as with real numbers.

The Complex Stack and Complex Mode

Calculations with complex numbers are

performed using a complex stack composed

of two parallel four-register stacks (and two

LAST X registers). One of these parallel

stacks – referred to as the real stack –

contains the real parts of complex numbers

used in calculations. (This is the same stack

used in ordinary calculations.) The other

stack – referred to as the imaginary stack –

contains the imaginary parts of complex

numbers used in calculations.

Creating the Complex Stack

The imaginary stack is created (by converting five storage registers as

described in appendix C) when you activate Complex mode; it does not

exist when the calculator is not in Complex mode.

 Section 11: Calculating With Complex Numbers 121

Complex mode is activated

1) automatically, when executing ´ V or ´ }; or

2) by setting flag 8, the Complex mode flag (|F 8).

When the calculator is in Complex mode, the C annunciator in the display

is lit. This tells you that flag 8 is set and the complex stack exists. In or out

of Complex mode, the number appearing in the display is the number in the

real X-register.

Note: In Complex mode (signified by the C annunciator), the HP-

15C performs all trigonometric functions using radians. The

trigonometric mode annunciator in the display (RAD, GRAD, or

blank for Degrees) applies to two functions only: ; and :

(as explained later in this section).

Deactivating Complex Mode

Since Complex mode requires the allocation of five registers from memory,

you will have more memory available for programming and other advanced

functions if you deactivate Complex mode when you are working solely

with real numbers.

To deactivate Complex mode, clear flag 8 (keystroke sequence: | "

8). The C annunciator will disappear.

Complex mode is also deactivated when Continuous Memory is reset (as

described on page 63). In any case, deactivating Complex mode dissolves

the imaginary stack, and all imaginary numbers there are lost.

Complex Numbers and the Stack

Entering Complex Numbers

To enter a number with real and imaginary parts;

1. Key the real part of the number into the display.

2. Press v

3. Key the imaginary part of the number into the display.

4. Press ´ V. (If not already in Complex mode, this creates the

imaginary stack and displays the C annunciator.)

122 Section 11: Calculating With Complex Numbers

Example: Add 2 + 3i and 4 + 5i. (The operations are illustrated in the stack

diagrams following the keystroke listing.)

Keystrokes Display

´ • 4

2 v 2.0000 Keys real part of first number

into (real) Y-register.

3 3 Keys imaginary part of first

number into (real)

X-register.

´ V 2.0000 Creates imaginary stack; moves

the 3 into the imaginary X-

register, and drops the 2 into the

real X-register.

4 v 4.0000 Keys real part of second number

into (real) Y-register.

5 5 Keys imaginary part of second

number into (real) X-register.

´ V 4.0000 Copies 5 from real

X-register into imaginary

X-register, copies 4 from real Y-

register into real X-register, and

drops stack.

+ 6.0000 Real part of sum.

´ % (hold) 8.0000 Displays imaginary part

 (release) 6.0000 of sum while the % key is held.

(This also terminates digit entry.)

The operation of the real and imaginary stacks during this process is

illustrated below. (Assume that the stack registers have been loaded already

with the numbers shown as the result of previous calculations). Note that

the imaginary stack, which is shown below at the right of the real stack, is

not created until ´ V is pressed. (Recall also that the shading of the

stack indicates that those contents will be written over when the next

number is keyed in or recalled.)

 Section 11: Calculating With Complex Numbers 123

 Re Im Re Im Re Im Re Im Re Im

T 9 8 7 7 7 0

Z 8 7 6 6 7 0

Y 7 6 2 2 6 0

X 6 2 2 3 2 3

Keys: 2 v 3 ´ V

The execution of ´ V causes the entire stack to drop, the T contents to

duplicate, and the real X contents to move to the imaginary X-register.

When the second complex number is entered, the stacks operate as shown

below. Note that v lifts both stacks.

 Re Im Re Im Re Im Re Im

T 7 0 7 0 6 0 6 0

Z 7 0 6 0 2 3 2 3

Y 6 0 2 3 4 0 4 0

X 2 3 4 0 4 0 5 0

Keys: 4 v 5

 Re Im Re Im Re Im

T 6 0 6 0 6 0

Z 2 3 6 0 6 0

Y 4 0 2 3 6 0

X 5 0 4 5 6 8

 Keys: ´ V +

A second method of entering complex numbers is to enter the imaginary

part first, then use } and −. This method is illustrated under

Entering Complex Numbers With −, page 127.

124 Section 11: Calculating With Complex Numbers

Stack Lift in Complex Mode

Stack lift operates on the imaginary stack as it does on the real stack (the

real stack behaves identically in and out of Complex mode). The same

functions that enable, disable, or are neutral to lifting of the real stack will

enable, disable, or be neutral to lifting of the imaginary stack. (These

processes are explained in detail in section 3 and appendix B.)

In addition, every nonneutral function, except − and ` causes the

clearing of the imaginary X-register when the next number is entered. That

is, these functions cause a zero to be placed in the imaginary X-register

when the next number is keyed in or recalled. Refer to the stack diagrams

above for illustrations. This feature allows you to execute calculator

operations using the same key sequences you use outside of Complex

mode.
*

Manipulating the Real and Imaginary Stacks

} (real exchange imaginary). Pressing ´ } will exchange

the contents of the real and imaginary X-registers, thereby converting the

imaginary part of the number into the real part and vice-versa. The Y-, Z-,

and T-registers are not affected. Press ´ } twice restore a number

to its original form.

} also activates Complex mode if it is not already activated.

Temporary Display of the Imaginary X-Register. Press ´ % to

momentarily display the imaginary part of the number in the X-register

without actually switching the real and imaginary parts. Hold the key down

to maintain the display.

Changing Signs

In Complex mode, the “ function affects only the number in the real X-

register – the imaginary X-register does not change. This enables you to

change the sign of the real or imaginary part without affecting the other. To

key in a negative real or imaginary part, change the sign of that part as you

enter it.

If you want to find the additive inverse of a complex number already in the

X-register, however, you cannot simply press “ as you would outside

* Except for the : and ; functions, as explained in this section (page 133).

 Section 11: Calculating With Complex Numbers 125

of Complex mode. Instead, you can do either of the following:

 Multiply by -1.

 If you don't want to disturb the rest of the stack, press “ ´

} “ ´ }.

To find the negative of only one part of a complex number in the X-register:

 Press “ to negate the real part only.

 Press ´ } “ ´ } to negate the imaginary

part only, forming the complex conjugate.

Clearing a Complex Number

Inevitably you will need to clear a complex number. You can clear only one

part at a time, but you can then write over both parts (since − and `

disable the stack).

Clearing the Real X-Register. Pressing − (or | `) with the

calculator in Complex mode clears only the number in the real X-register; it

does not clear the number in the imaginary X-register.

Example: Change 6 + 8i to 7 + 8i and subtract it from the previous entry.

(Use ´ } or ´ % to view the imaginary part in X.) Assume a,

b, c and d represent parts of complex numbers.

 Re Im Re Im Re Im Re Im

T a b a b a b a b

Z c d c d c d a b

Y 6 0 6 0 6 0 c d

X 6 8 0 8 7 8 -1 -8

Keys: − 7 - (or other
operation)

Since clearing disables the stack (as explained above), the next number you

enter will replace the cleared value. If you want to replace the real part with

zero, after clearing use v or any other function to terminate digit

entry (otherwise the next number you enter will write over the zero); the

imaginary part will remain unchanged. You can then continue with any

calculator function.

126 Section 11: Calculating With Complex Numbers

Clearing the Imaginary X-Register. To clear the number in the imaginary

X-register, press ´ }, then press −. Press ´ } again to

return the zero, or any new number keyed in, to the imaginary X-register.

Example: Replace -1 -8i by -1 + 5i.

 Re Im Re Im Re Im Re Im Re Im

T a b a b a b a b a b

Z c d c d c d c d c d

Y e f e f e f e f e f

X -1 -8 -8 -1 0 -1 5 -1 -1 5

Keys: } − 5 }

(continue with
any operation)

Clearing the Real and Imaginary X-Registers. If you want to clear or

replace both the real and imaginary parts of the number in the X-register,

simply press −, which will disable the stack, and enter your new number.

(Enter zeros if you want the X-register to contain zeros.) Alternatively, if

the new number will be purely real (including 0 + 0i), you can quickly clear

or replace the old, complex number by pressing) followed by zero or

the new, real number.

Example: Replace -1 + 5i with 4 + 7i.

 Re Im Re Im Re Im Re Im Re Im

T a b a b c d c d c d

Z c d c d e f e f c d

Y e f e f 4 5 4 5 e f

X -1 5 0 5 4 5 7 0 4 7

Keys: − 4 v 7 ´ V

(continue with
any operation)

 Section 11: Calculating With Complex Numbers 127

Entering Complex Numbers with −. The clearing functions − and

` can also be used with } as an alternative method of entering

(and clearing) complex numbers. Using this method, you can enter a

complex number using only the X-register, without affecting the rest of the

stack. (This is possible because − and ` disable stack lift.)

Executing } will also create an imaginary stack if one is not already

present.

Example: Enter 9 + 8i without moving the stack and then find its square.

Keystrokes Display

(−) (0.0000) Prevents stack lift when the

next digit (8) is keyed in.

Omit this step if you'd rather

save what's in X and lose

what's in T.

8 8 Enter imaginary part first.

´ } 7.0000 Displays real part; Complex

mode activated.

− 0.0000 Disables stack. (Otherwise, it

would lift following }.)

9 9 Enters real part (digit entry not

terminated).

| x 17.0000 Real part.

´ % (hold)
(release)

144.0000 Imaginary part.

17.0000

 Re Im Re Im Re Im Re Im

T a b a b a b a b

Z c d c d c d c d

Y e f e f e f e f

X 4 7 0 7 8 7 7 8

Keys: − 8 ´ }

128 Section 11: Calculating With Complex Numbers

 Re Im Re Im Re Im Re Im

T a b a b a b a b

Z c d c d c d c d

Y e f e f e f e f

X 7 8 0 8 9 8 17 144

Keys: − 9 | x

Entering a Real Number

You have already seen two ways of entering a complex number. There is a

shorter way to enter a real number: simply key it (or recall it) into the

display just as you would if the calculator were not in Complex mode. As

you do so, a zero will be placed in the imaginary X-register (as long as the

previous operation was not − or `, as explained on page 124).

The operation of the real and imaginary stacks during this process is

illustrated below. (Assume the last key pressed was not − or ` and

the contents remain from the previous example.)

 Re Im Re Im Re Im

T a b c d e f

Z c d e f 17 144

Y e f 17 144 4 0

X 17 144 4 0 4 0

Keys: 4 v (Followed by
another number.)

 Section 11: Calculating With Complex Numbers 129

Entering a Pure Imaginary Number

There is a shortcut for entering a pure imaginary number into the X-register

when you are already in Complex mode: key in the (imaginary) number and

press ´ }

Example: Enter 0 + 10i (assuming the last function executed was not −

or `.

Keystrokes Display

10 10 Keys 10 into the displayed

real X-register and zero into

the imaginary X-register.

´ } 0.0000 Exchanges numbers in real

and imaginary X-registers.

Display again shows that the

number in the real X-

register is zero — as it

should be for a pure

imaginary number.

The operation of the real and imaginary stacks during this process is

illustrated below. (Assume the stack registers contain the numbers resulting

from the preceding examples.)

Re Im Re Im Re Im

T e f e f e f

Z 17 144 17 144 17 144

Y 4 0 4 0 4 0

X 4 0 10 0 0 10

Keys: 10 ´} (Continue with
any operation.)

Note that pressing ´ } simply exchanges the numbers in the real

and imaginary X-registers and not those in the remaining stack registers.

130 Section 11: Calculating With Complex Numbers

Storing and Recalling Complex Numbers

The O and l functions act on the real X-register only; therefore,

the imaginary part of a complex number must be stored or recalled

separately. The keystrokes to do this can be entered as part of a program

and executed automatically.*

To store a + ib from the complex X-register to R1 and R2, you can use the

sequence

O 1 ´} O 2

You can follow this by ´ } to return the stack to its original

condition if desired. To recall a + ib from R1 and R2 you can use the

sequence

l 1 l 2 ´ V

If you wish to avoid disturbing the rest of the stack, you can recall the

number using the sequence

l 2 ´ } − l 1

(In Program mode, use | ` instead of −.)

Operations With Complex Numbers

Almost all functions performed on real numbers will yield the same answer

whether executed in or out of Complex mode,† assuming the result is also

real. In other words, Complex mode does not restrict your ability to

calculate with real numbers.

Any functions not mentioned below or in the rest of this section

(Calculating With Complex Numbers) ignore the imaginary stack.

* You can use the HP-15C matrix function, described in section 12, to make storing and

recalling complex numbers more convenient. By dimensioning a matrix to be n×2, n

complex numbers can be stored as rows of the matrix. (This technique is demonstrated in
the HP-15C Advanced Functions Handbook, section 3, under Applications.)

† The exceptions are : and ;, which operate differently in Complex mode in order to

facilitate converting complex numbers to polar form (page 133).

 Section 11: Calculating With Complex Numbers 131

One-Number Functions

The following functions operate on both the real and imaginary parts of the

number in the X-register, and place the real and imaginary parts of the

answer back into those registers.

¤ x N o ∕ @ ' a : ;

All trigonometric and hyperbolic functions and their inverses also belong to

this group.*

The a function gives the magnitude of the number in the X-registers

(the square root of the sum of the squares of the real and imaginary parts);

the imaginary part of the magnitude is zero.

: converts to polar form and ; converts to rectangular form,

as described later in this section (page 133).

For the trigonometric functions, the calculator considers numbers in the real

and imaginary X-registers to be expressed in radians—regardless of the

current trigonometric mode. To calculate trigonometric functions for values

given in degrees, use r to convert those values to radians before

executing the trigonometric function.

Two-Number Functions

The following functions operate on both the real and imaginary parts of the

numbers in the X- and Y-registers, and place the real and imaginary parts of

the answer into the X-registers. Both stacks drop, just as the ordinary stack

drops after a two-number function not in Complex mode.

+ - * ÷ y

Stack Manipulation Functions

When the calculator is in Complex mode, the following functions

simultaneously manipulate both the real and imaginary stacks in the same

way as they manipulate the ordinary stack when the calculator is not in

Complex mode. The ® function. for instance, will exchange both the

real and imaginary parts of the numbers in the X- and Y-registers.

®) (v K

* Refer to the HP-15C Advanced Functions Handbook for definitions of complex

trigonometric functions and further information about doing calculations in Complex mode.

132 Section 11: Calculating With Complex Numbers

Conditional Tests

For programming, the four conditional tests below will work in the complex

sense: ~ and T 0 compare the complex number in the (real and

imaginary) X-registers to 0 + 0i, while T 5 and T 6 compare the

complex numbers in the (real and imaginary) X- and Y-registers. All other

conditional tests besides those listed below ignore the imaginary stack.

~ T 0 (x ≠ 0) T 5 (x = y) T 6 (x ≠ y)

Example: Complex Arithmetic. The characteristic impedance of a ladder

network is given by an equation of the form

B

A
Z 0 ,

where A and B are complex numbers. Find Z0 for the hypothetical values

A = 1.2 + 4.7i and B = 2.7 + 3.2i.

Keystrokes Display

1.2 v 4.7 ´ V 1.2000 Enters A into real and

imaginary X-registers.

2.7 v 3.2 ´ V 2.7000 Enters B into real and

imaginary X-registers,

moving A into real and

imaginary Y-registers.

÷ 1.0428 Calculates A/B.

¤ 1.0491 Calculates Z0 and

displays real part.

´ % (hold) 0.2406 Displays imaginary part

of Z0 while % is held

down.

(release) 1.0491 Again displays real part

of Z0.

 Section 11: Calculating With Complex Numbers 133

Complex Results from Real Numbers

In the preceding examples, the entry of complex numbers had ensured the

(automatic) activation of Complex mode. There will be times, however,

when you will need Complex mode to perform certain operations on real

numbers, such as 5 . (Without Complex mode, such as operation would

result in an Error 0 – improper math function.) To activate Complex mode

at any time and without disturbing the stack contents, set flag 8 before

executing the function in question.
*

Example: The arc sine (sin
-1

) of 2.404 normally would result in an Error 0.

Assuming 2.404 in the X-register, the complex value arc sin 2.404 can be

calculated as follows:

Keystrokes Display

| F 8 Activates Complex Mode.

| , 1.5708 Real part of

arc sin 2.404.

´ % (hold) -1.5239 Imaginary part of

arc sin 2.404.

(release) 1.5708 Display shows real part

again when % is

released.

Polar and Rectangular Coordinate Conversions

In many applications, complex numbers are represented in polar form,

sometimes using phasor notation. However, the HP-15C assumes that any

complex numbers are in rectangular form. Therefore, any numbers in polar

or phasor form must be converted to rectangular form before performing a

function in Complex mode.

* Pressing ´ } twice will accomplish the same thing. The sequence ´ V is not used because

it would combine any numbers, in the real X-. and Y-registers into a single complex number.

134 Section 11: Calculating With Complex Numbers

a + ib =

r (cos θ + i sin θ) = re
iθ

(polar)

r θ (phasor)

; and : can be used to interconvert the rectangular and polar forms of

a complex number. They operate in Complex mode as follows:

´
;

converts the polar (or phasor) form of a complex number to its

rectangular form by replacing the magnitude r in the real X-

register with a, and replacing the angle θ in the imaginary X-

register with b.

|
:

converts the rectangular coordinates of a complex number to the

polar (or phasor) form by replacing the real part a in the real X-

register with r, and replacing the imaginary part b in the

imaginary X-register with θ.

These are the only functions in Complex mode that are affected by the

current trigonometric mode setting. That is, the angular units for θ must

correspond to the trigonometric mode indicated by the annunciator

(or absence thereof).

 Section 11: Calculating With Complex Numbers 135

Example: Find the sum 2(cos 65° + i sin 65°) + 3(cos 40° + i sin 40°) and

express the result in polar form, (In phasor form, evaluate 2 65° +

3 40°.)

Keystrokes Display

| D Sets Degrees mode for any polar-

rectangular conversions.

2 v 2.0000

65 ´ V 2.0000 C annunciator displayed;

Complex mode activated.

´ ; 0.8452 Converts polar to rectangular

form; real part (a) displayed.

3 v 3.0000

40 ´ V 3.0000

´ ; 2.2981 Converts polar to rectangular

form; real part (a) displayed.

+ 3.1434

| : 4.8863 Converts rectangular to polar

form; r displayed.

´% (hold) 49.9612 θ (in degrees).

(release) 4.8863

Problems

By working through the following problems, you will see that calculating

with complex numbers on the HP-15C is as easy as calculating with real

numbers. In fact, once your numbers are entered, most mathematical

operations will use exactly the same keystrokes. Try it and see!

1. Evaluate:
)54(2) 52(4

3
)68(2

ii

ii





136 Section 11: Calculating With Complex Numbers

Keystrokes Display

2 ´ } 0.0000 2i. Display shows real part.

8 “ v -8.0000

6 ´ V -8.0000 -8 + 6i.

3 Y 352.0000 (-8 + 6i)
3
.

* -1.872.0000 2 i (-8 + 6i)
3
.

4 v 4.0000

5 ¤ 2.2361

2 “ * -4.4721 52 .

´ V 4.0000 i524  .

÷ -295.4551

i

ii

5 2 - 4

3)6 (-82 
.

2 v 5 ¤ 2.2361

4 “ * -8.9443

´ V 2.0000 i542  .

÷ 9.3982 Real part of result.

´ % -35.1344
Answer: 9.3982 -35.1344i.

 9.3982

2. Write a program to evaluate the function
35

12






z

z
ω for different

values of z. (ω represents a linear fractional transformation, a class of

conformal mappings.) Evaluate ω for z = l+2i.

(Answer: 0.3902 + 0.0122i. One possible keystroke sequence is: ´

b A v v 2 * 1 + ® 5 * 3 + ÷

¦ ´ } | n.)

3. Try your hand at a complex polynomial and rework the example on

page 80. You can use the same program to evaluate P(z) = 5z
4
 + 2z

3
,

where z is some complex number.

Load the stack with z = 7 + 0i and see if you get the same answer as

before. (Answer: 12,691.0000 + 0.0000i.)

 Now run the program for z = 1 + i. (Answer -24.0000 + 4.0000i.)

 Section 11: Calculating With Complex Numbers 137

For Further Information

The HP-15C Advanced Functions Handbook presents more detailed and

technical aspects of using complex numbers in various functions with the

HP-15C. Applications are included. The topics include:

 Accuracy considerations.

 Principal branches of multi-valued functions.

 Complex contour integrals.

 Complex potentials.

 Storing and recalling complex numbers using a matrix.

 Calculating the nth roots of a complex number.

 Solving an equation for its complex roots.

 Using _ and f in Complex mode.

138

Section 12

Calculating With Matrices

The HP-15C enables you to perform matrix calculations, giving you the

capability to handle advanced problems with ease. The calculator can work

with up to five matrices, which are named A through E since they are

accessed using the corresponding A through E keys. The HP-15C lets

you specify the size of each matrix, store and recall the values of matrix

elements, and perform matrix operations – for matrices with real or

complex elements. (A summary of matrix functions is listed at the end of

this section.)

A common application of matrix calculations is solving a system of linear

equations. For example, consider the equations

3.8x1 + 7.2x2 = 16.5

1.3x1 - 0.9x2 = -22.1

for which you must determine the values of x1 and x2.

These equations can be expressed in matrix form as AX = B, where





















2

1
 ,

0.91.3

7.2 3.8

x

x
XA , and










22.1

16.5
B .

The following keystrokes show how easily you can solve this matrix

problem using your HP-15C. (The matrix operations used in this example

are explained in detail later in this section.)

First, dimension the two known matrices, A and B, and enter the values of

their elements, from left to right along each row from the first row to the

last. Also, designate matrix C as the matrix that you will use to store the

result of your matrix calculation (C = X).

 Section 12: Calculating with Matrices 139

Keystrokes Display

| " 8 Deactivates Complex

mode.

2 v ´ m A 2.0000 Dimensions matrix A

to be 2×2.

´ > 1 2.0000 Prepares for automatic

entry of matrix

elements in User mode.

´ U 2.0000 (Turns on the USER

annunciator.)

3.8 O A A 1,1 Denotes matrix A, row

1, column 1. (A display

like this appears

momentarily as you

enter each element and

remains as long as you

hold the letter key.)

 3.8000 Stores a11.

7.2 O A 7.2000 Stores a12.

1.3 O A 1.3000 Stores a21.

.9 “ O A -0.9000 Stores a22.

2 v 1 ´ m
B

 1.0000 Dimensions matrix B to

be 2×l.

16.5 O B 16.5000 Stores b11.

22.1 “ O B -22.1000 Stores b21.

´ < C -22.1000 Designates matrix C

for storing the result.

Using matrix notation, the solution of the matrix equation AX = B is

X = A
-1

B

where A
–1

 is the inverse of matrix A. You can perform this operation by

entering the ―descriptors‖ for matrices B and A into the Y- and X-registers

and then pressing ÷. (A descriptor shows the name and dimensions of a

matrix.) Note that if A and B were numbers, you could calculate the answer

in a similar manner.

140 Section 12: Calculating with Matrices

Keystrokes Display

l > B b 2 1 Enters descriptor for B, the 2×1

constant matrix.

l > A A 2 2 Enters descriptor for A, the 2×2

coefficient matrix, into the X-

register, moving the descriptor

for B into the Y-register.

÷ running Temporary display while A
-1

B is

being calculated and stored in

matrix C.

 C 2 1 Descriptor for the result matrix,

C, a 2×1 matrix.

Now recall the elements of matrix C – the solution to the matrix equation.

(Also remove the calculator from User mode and clear all matrices.)

Keystrokes Display

l C C 1,1 Denotes matrix C, row 1, column

1.

 -11.2887 Value of c11 (x1).

l C 8.2496 Value of c21 (x2).

´ U 8.2496 Deactivates User mode.

´>0 8.2496 Clears all matrices.

The solution to the system of equations is x1 = -11.2887 and x2 = 8.2496.

Note: The description of matrix calculations in this section

presumes that you are already familiar with matrix theory and

matrix algebra.

Matrix Dimensions

Up to 64 matrix elements can be stored in memory. You can use all

64 elements in one matrix or distribute them among up to five matrices.

 Section 12: Calculating with Matrices 141

Matrix inversion, for example, can be performed on an 8×8 matrix with real

elements (or on a 4×4 matrix with complex elements, as described later
*
).

To conserve memory, all matrices are initially dimensioned as 0×0. When a

matrix is dimensioned or redimensioned, the proper number of registers is

automatically allocated in memory. You may have to increase the number

of registers allocated to matrix memory before dimensioning a matrix or

before performing certain matrix operations. Appendix C describes how

memory is organized, how to determine the number of registers currently

available for storing matrix elements, and how to increase or decrease that

number.

Dimensioning a Matrix

To dimension a matrix to have y rows and x columns, place those numbers

in the Y- and X-registers, respectively, and then execute ´ m

followed by the letter key specifying the matrix:

1. Key the number of rows (y) into

the display, then press v

to lift it into the Y-register.

Y
number of

rows

2. Key the number of columns (x)

into the X-register.

X
number of

columns
3. Press ´ m followed by a

letter key, A through E,

that specifies the name of the

matrix.
†

* The matrix functions described in this section operate on real matrices only. (In Complex mode, the

imaginary stack is ignored during matrix operation.) However, the HP-15C has four matrix functions that

enable you to calculate using real representations of complex matrices, as described on pages 160-173.

† You don't need to press ´ before the letter key. (Refer to Abbreviated Key Sequences on page 78.)

142 Section 12: Calculating with Matrices

Example: Dimension matrix A to be a 2×3 matrix.

Keystrokes Display

2 v 2.0000 Keys number of rows into

Y-register.

3 3 Keys number of columns into X-

register.

´mA 3.0000 Dimensions matrix A to be 2×3.

Displaying Matrix Dimensions

There are two ways you can display the dimensions of a matrix:

 Press l > followed by the letter key specifying the

matrix. The calculator displays the name of the matrix at the left,

and the number of rows followed by the number of columns at the

right.

 Press l m followed by the letter key specifying the

matrix. The calculator places the number of rows in the Y-register

and the number of columns in the X-register.

Keystrokes Display

l > B b 0 0 Matrix B has 0 rows and 0

columns, since it has not been

dimensioned otherwise.

l m A 3.0000 Number of columns in A.

® 2.0000 Number of rows in A.

Changing Matrix Dimensions

Values of matrix elements are stored in memory in order from left to right

along each row, from the first row to the last. If you redimension a matrix to

a smaller size, the required values are reassigned according to the new

dimensions and the extra values are lost. For example, if the 2×3 matrix

shown at the left below is redimensioned to 2×2, then

 Section 12: Calculating with Matrices 143

If you redimension a matrix to a larger size, elements with the value 0 are

added at the end as required by the new dimensions. For example, if the

same 2×3 matrix is re dimensioned, to 2×4, then

When you have finished calculating with matrices, you'll probably want to

redimension all five matrices to 0×0, so that the registers used for storing

their elements will be available for program lines or for other advanced

functions. You can redimension all five matrices to 0×0 at one time by

pressing ´ > 0. (You can dimension a single matrix to 0×0 by

pressing 0 ´ m {A through E}.)

Storing and Recalling Matrix Elements

The HP-15C provides two ways of storing and recalling values of matrix

elements. The first method allows you to progress through all of the

elements in order. The second method allows you to access elements

individually.

Storing and Recalling All Elements in Order

The HP-15C normally uses storage registers R0 and

R1 to indicate the row and column numbers of a

matrix element. If the calculator is in User mode,

the row and column numbers are automatically

incremented as you store or recall each matrix

element, from left to right along each row from the

first row to the last.

To set the row and column numbers in R0 and R1 to row 1, column 1,

press ´ > 1.

144 Section 12: Calculating with Matrices

To store or recall sequential elements of a matrix:

1. Be sure the matrix is properly dimensioned.

2. Press ´ >1. This stores 1 in both storage registers R0 and

R1, so that elements will be accessed starting at row 1, column 1.

3. Activate User mode by pressing ´ U. With the calculator in

User mode, after each element is stored or recalled the row number

in R0 or the column number in R1 is automatically incremented by 1,

as shown in the example following.

4. If you are storing elements, key in the value of the element to be

stored in row 1, column 1.

5. Press O or l followed by the letter key specifying the

matrix.

6. Repeat steps 4 and 5 for all elements of the matrix. The row and

column numbers are incremented according to the dimensions of the

matrix you specify.

While the letter key specifying the matrix is held down after O or

l is pressed, the calculator displays the name of the matrix followed by

the row and column numbers of the element whose value is being stored or

recalled. If the letter key is held down for longer than about 3 seconds, the

calculator displays null, doesn't store or recall the element value, and

doesn't increment the row and column numbers. (Also, the stack registers

aren't changed.)

After the last element of the matrix has been accessed, the row and column

numbers both return to 1.

Example: Store the values shown below in the elements of the matrix A

dimensioned above. (Be sure matrix A is dimensioned to 2×3.)




















654

321

232221

131211

aaa

aaa
A

 Section 12: Calculating with Matrices 145

Keystrokes Display

´ > 1 Sets beginning row and column

numbers in R0 and R1 to 1.

(Display shows the previous

result.)

´ U Activates User mode.

1 O A A 1,1 Row 1, column 1 of A.

(Displayed momentarily while

A key held down.)

 1.0000 Value of a11.

2 O A 2.0000 Value of a12.

3 O A 3.0000 Value of a13.

4 O A 4.0000 Value of a21.

5 O A 5.0000 Value of a22.

6 O A 6.0000 Value of a23.

lA A 1,1 Recalls element in row 1,

column l. (R0 and R1 were reset

in preceding step.)

 1.0000 Value of a11.

l A 2.0000 Value of a12.

l A 3.0000 Value of a13.

l A 4.0000 Value of a21.

l A 5.0000 Value of a22.

l A 6.0000 Value of a23.

´ U 6.0000 Deactivates User mode.

Checking and Changing Matrix Elements Individually

The calculator provides two ways to check (recall) and change (store) the

value of a particular matrix element. The first method uses storage registers

R0 and R1 in the same way as described above – except that the row and

column numbers aren't automatically changed when User mode is

deactivated. The second method uses the stack to define the row and

column numbers.

146 Section 12: Calculating with Matrices

Using R0 and R1. To access a particular matrix element, store its row

number in R0 and its column number in R1. These numbers won't change

automatically (unless the calculator is in User mode).

 To recall the element value (after storing the row and column

numbers), press l followed by the letter key specifying the

matrix.

 To store a value in that element (after storing the row and column

numbers), place the value in the X-register and press O

followed by the letter key specifying the matrix.

Example: Store the value 9 as the element in row 2, column 3 of matrix A

from the previous example.

Keystrokes Display

2 O 0 2.0000 Stores row number in R0.

3 O 1 3.0000 Stores column number in R1.

9 9 Keys the new element value into

the X-register.

O A A 2,3 Row 2, column 3 of A.

 9.0000 Value of a23.

Using the Stack. You can use the stack registers to specify a particular matrix

element. This eliminates the need to change the numbers in R0 and R1.

 To recall an element value, enter the row number and column

number into the stack (in that order). Then press l |

followed by the letter key specifying the matrix. The element value

is placed in the X-register. (The row and column numbers are lost

from the stack.)

 To store an element value, first enter the value into the stack

followed by the row number and column number. Then press

O | followed by the letter key specifying the matrix. (The

row and column numbers are lost from the stack; the element value

is returned to the X-register.)

Note that these are the only operations in which the blue | key precedes

a gold letter key.

 Section 12: Calculating with Matrices 147

Example: Recall the element in row 2, column 1 of matrix A from the

previous example. Use the stack registers.

Keystrokes Display

2 v 1 1 Enters row number into Y-

register and column number into

X-register.

l | A 4.0000 Value of a21.

Storing a Number in All Elements of a Matrix

To store a number in all elements of a matrix, simply key that number into

the display, then press O> followed by the letter key specifying

the matrix.

Matrix Operations

In many ways, matrix operations are like numeric calculations. Numeric

calculations require you to specify the numbers to be used; often you define

a register for storing the result. Similarly, matrix calculations require you to

specify one or two matrices that you want to use. A matrix descriptor is

used to specify a particular matrix. For many calculations, you also must

specify a matrix for storing the result. This is the result matrix.

Because matrix operations usually require many individual calculations, the

calculator flashes the running display during most matrix operations.

Matrix Descriptors

Earlier in this section you saw that when you press l > followed

by a letter key specifying a matrix, the name of the matrix appears at the left

of the display and the number of rows followed by the number of columns

appears at the right. The matrix name is called the descriptor of the matrix.

Matrix descriptors can be moved among the stack and data storage registers

just like a number – that is, using O, l, v, etc. Whenever a

matrix descriptor is displayed in the X-register, the current dimensions of

that matrix are shown with it.
You use matrix descriptors to indicate which matrices are used in each

matrix operation. The matrix operations discussed in the rest of this section

148 Section 12: Calculating with Matrices

operate on the matrices whose descriptors are placed in the X-register and

(for some operations) the Y-register.

Two matrix operations – calculating a determinant and solving the matrix

equation AX = B – involve calculating an LU decomposition (also known

as an LU factorization) of the matrix specified in the X-register.
*
 A matrix

that is an LU decomposition is signified by two dashes following the matrix

name in the display of its descriptor. (Refer to page 160 for using a matrix

in LU form.)

The Result Matrix

For many operations discussed in this section, you need to define the matrix

in which the result of the operation should be stored. This matrix is called

the result matrix.

Other matrix operations do not use or affect the result matrix. (This is noted

in the descriptions of these operations.) Such an operation either replaces

the original matrix with the result of the operation (if the result is a matrix,

such as a transpose) or returns a number to the X-register (if the result is a

number, such as a row norm).

Before you perform an operation that uses the result matrix, you must

designate the result matrix. Do this by pressing ´ < followed by

the letter key specifying the matrix, (If the descriptor of the intended result

matrix is already in the X-register, you can press O< instead.)

The designated matrix remains the result matrix until another is designated.
†

To display the descriptor of the result matrix, press l <.

When you perform an operation that affects the result matrix, the matrix is

automatically redimensioned to the proper size. If this redimensioning

would require more additional elements than there are available in matrix

memory (a maximum of 64 for all five matrices), then the operation can't be

performed. This restriction can often be overcome by designating the result

matrix to be one of the matrices being operated on. (However, there are

certain operations for which the result matrix can not be the same one as

either of the matrices being operated on – this is noted in the description of

these operations.)

* The LU decomposition of a matrix A is another matrix in which is encoded a lower-triangular matrix, L,

and an upper-triangular matrix, U, whose product LU equals matrix A (possibly with same rows

interchanged). The HP-15C Advanced Functions Handbook discusses LU decomposition in detail.

† Matrix A is automatically designated as the result matrix whenever Continuous Memory is reset.

 Section 12: Calculating with Matrices 149

While the key used for any matrix operation that stores a result in the result

matrix is held down, the descriptor of the result matrix is displayed. If the

key is released within about 3 seconds, the operation is performed, and the

descriptor of the result matrix is placed in the X-register. If the key is held

down longer, the operation is not performed and the calculator displays

null.

Copying a Matrix

To copy the elements of a matrix into the corresponding elements of

another matrix, use the O > sequence:

1. Press l > followed by the letter key specifying the

matrix to be copied. This enters the descriptor of the matrix into

the display.

2. Press O> followed by the letter key specifying the

matrix to be copied into.

If the matrix specified after l does not have the same dimensions as the

matrix specified after O, the second matrix is redimensioned to agree

with the first. The matrix specified after O need not already be

dimensioned.

Example: Copy matrix A from the previous example into matrix B.

Keystrokes Display

l>

A

A 2 3 Displays descriptor of

matrix to be copied.

O>

B

A 2 3 Redimensions matrix B and

copies A into B.

l>

B

b 2 3 Displays descriptor of new

matrix B.

One-Matrix Operations

The following table shows functions that operate on only the matrix

specified in the X-register. Operations involving a single matrix plus a

number in another stack register are described under Scalar Operations

(page 151).

150 Section 12: Calculating with Matrices

One-Matrix Operations:

Sign Change, Inverse, Transpose, Norms, Determinant

Keystroke(s)
Result in

X-register

Effect on Matrix

Specified in

X-register

Effect on Result

Matrix

“ No change. Changes sign of

all elements.

None. ‡

∕

(´∕ in

User Mode)

Descriptor of

result matrix.

None. ‡ Inverse of

specified matrix.

§

´> 4 Descriptor of

transpose.

Replaced by

transpose.

None. ‡

´> 7 Row norm of

specified

matrix.*

None. None.

´> 8 Frobenius or

Euclidean norm

of specified

matrix. †

None. None.

´> 9 Determinant of

specified

matrix.

None.‡ LU decomposi-

tion of specified

matrix.§

* The row norm is the largest sum of the absolute values of the elements in

each row of the specified matrix.

†
The Frobenius of Euclidean norm is the square root of the sum of the

squares of all elements in the specified matrix.

‡ Unless the result matrix is the same matrix specified in the X-register.

§ If the specified matrix is a singular matrix (that is, one that doesn’t have an

inverse), then the HP-15C modifies the LU form by an amount that is

usually small compared to round-off error. For ∕, the calculated inverse

is the inverse of a matrix close to the original, singular matrix. (Refer to the

HP-15C Advanced Functions Handbook for further information.)

 Section 12: Calculating with Matrices 151

Example: Calculate the transpose of matrix B. Matrix B was set in

preceding examples to

.
954

321








B

Keystrokes Display

l > B b 2 3 Displays descriptor of

2×3 matrix B.

´ > 4 b 3 2 Descriptor of 3×2

transpose.

Matrix B (which you can view using l B in User mode) is now

.

93

52

41

















B

Scalar Operations

Scalar operations perform arithmetic operations between a scalar (that is, a

number) and each element of a matrix. The scalar and the descriptor of the

matrix must be placed in the X- and Y-registers – in either order. (Note that

the register position will affect the outcome of the - and ÷ functions.)

The resulting values are stored in the corresponding elements of the result

matrix.

The possible operations are shown in the following table.

152 Section 12: Calculating with Matrices

Operation

Elements of Result Matrix*

Matrix in Y-Register Scalar in Y-Register

Scalar in X-Register Matrix in X-Register

+ Adds scalar value to each matrix element.

* Multiplies each matrix element by scalar value.

- Subtracts scalar value

from each matrix

element.

Subtracts each matrix

element from scalar value.

÷ Divides each matrix

element by scalar value.

Calculates inverse of matrix

and multiplies each element

by scalar value.

* Result matrix may be the specified matrix.

Example: Calculate the matrix B = 2A. then subtract 1 from every element

in B. From before, use











954

321
A .

Keystrokes Display

´<B Designates matrix B as result

matrix.

l> A A 2 3 Displays descriptor of matrix A.

2 * b 2 3 Redimensions matrix B to the

same dimensions as A, multiplies

the elements of A by 2, stores

those values in the corresponding

elements of B, and displays the

descriptor of the result matrix.

 Section 12: Calculating with Matrices 153

Keystrokes Display

1 - b 2 3 Subtracts 1 from the elements of

matrix B and stores those values in the

same elements of B.

The result (which you can view using lB in User mode) is














1797

531
B .

Arithmetic Operations

With matrix descriptors in both the X- and Y-registers, pressing + or

- calculates the sum or difference of the matrices.

Pressing Calculates*

+ Y + X

- Y - X

* Result is stored in result matrix.

Result matrix may be X or Y

Example: Calculate C = B - A, where A and B are defined in the previous

example.

. and
1797

531

954

321













 BA

Keystrokes Display

´< C Designates C as result matrix.

l> B b 2 3 Recalls descriptor of matrix B.

(This step can be skipped if

descriptor is already in X-register.)

l> A A 2 3 Recalls descriptor of matrix A into

X-register, moving descriptor of

matrix B to Y-register.

154 Section 12: Calculating with Matrices

Keystrokes

Display

- C 2 3 Calculates B - A and stores

values in redimensioned result

matrix C.

The result is 









843

210
C

Matrix Multiplication

With matrix description in both the X- and Y-registers, you can calculate

three different matrix products. The table below shows the results of the

three functions for a matrix X specified in the X-register and a matrix Y

specified in the Y-register. The matrix X
-1

 is the inverse of X, and the

matrix Y
T
 is the transpose of Y.

Pressing Calculates*

* YX

´ > 5 Y
T
X

÷ X
-1

Y

* Result is stored in result matrix. For ÷, the

result matrix can be Y but not X. For the others,

the result matrix must be other than X or Y.

Note: When you use the ÷ function to evaluate the expression

A
-1

B, you must enter the matrix descriptors in the order B, A rather

than in the order that they appear in the expression.
*

The value stored in each element of the result matrix is determined

according to the usual rules of matrix multiplication.

For > 5, the matrix specified in the Y-register isn't changed by this

operation, even though its transpose is used. The result is identical to that

obtained using > 4 (transpose) and *.

* This is the same order you would use if you were entering b and a for evaluating a-1b = b/a

 Section 12: Calculating with Matrices 155

For ÷, the matrix specified in the X-register is replaced by its LU

decomposition. The ÷ function calculates X
–1

Y using a more direct

method than does ∕ and *, giving the result faster and with improved

accuracy.

Example: Using matrices A and B from the previous example, calculate

C = A
T

B.



















1797

531

954

321
 and BA

Keystrokes Display

l>
A

A 2 3 Recalls descriptor for matrix A.

l>
B

b 2 3 Recalls descriptor for matrix B

into X-register, moving matrix

A descriptor into Y-register.

´<

C

b 2 3 Designates matrix C as result

matrix.

´> 5 C 3 3 Calculates A
T

B and stores

result in matrix C, which is

redimensioned to 3×3.

The result, matrix C, is



















1689066

955137

733929

C .

156 Section 12: Calculating with Matrices

Solving the Equation AX = B

The ÷ function is useful for solving

matrix equations of the form AX = B,

where A is the coefficient matrix, B is

the constant matrix, and X is the

solution matrix. The descriptor of the

constant matrix B should be entered in

the Y-register and the descriptor of the

coefficient matrix A should be entered

in the X-register Pressing ÷ then

calculates the solution X=A
-1

B.
*

Remember that the ÷ function replaces the coefficient matrix by its LU

decomposition and that this matrix must not be specified as the result

matrix. Furthermore, using ÷ rather than ∕ and * gives a solution

faster and with improved accuracy.

At the beginning of this section, you found the solution for a system of

linear equations in which the constant matrix and the solution matrix each

had one column. The following example illustrates that you can use the HP-

15C to find solutions for more than one set of constants—that is, for a

constant matrix and solution matrix with more than one column.

Example: Looking at his receipts for his

last three deliveries of cabbage and

broccoli, Silas Farmer sees the following

summary.

* If A is a singular matrix (that is, one that doesn’t have an inverse), then the HP-15C modifies the LU form

of A by an amount that is usually small compared to round-off error. The calculated solution corresponds

to that for a nonsingular coefficient matrix close to the original, singular matrix.

Y constant matrix

X
coefficient

matrix

 Section 12: Calculating with Matrices 157

 Week

1 2 3

Total Weight (kg) 274 233 331

Total Value $120.32 $112.96 $151.36

Silas knows that he received $0.24 per kilogram for his cabbage and $0.86

per kilogram for his broccoli. Use matrix operations to determine the

weights of cabbage and broccoli he delivered each week.

Solution: Each week's delivery represents two linear equations (one for

weight and one for value) with two unknown variables (the weights of

cabbage and broccoli). All three weeks can be handled simultaneously using

the matrix equation










0.860.24

11
 









232221

1312

ddd

ddd11 = 








151.36112.96120.32

331233274

or AD = B

where the first row of matrix D is the weights of cabbage for the three

weeks and the second row is the weights of broccoli.

Keystrokes Display

2

v´mA

2.0000 Dimensions A as 2×2 matrix.

´> 1 2.0000 Sets row and column numbers in R0

and R1 to 1.

´U 2.0000 Activates User mode.

1 OA 1.0000 Stores a11.

OA 1.0000 Stores a12.

.24 OA 0.2400 Stores a21.

.86 OA 0.8600 Stores a22.

2 v 3

´mB

3.0000 Dimensions B as 2×3 matrix.

158 Section 12: Calculating with Matrices

Keystrokes Display

274 OB 274.0000 Stores b11.
*

233 OB 233.0000 Stores b12.

331 OB 331.0000 Stores b13.

120.32 OB 120.3200 Stores b21.

112.96 OB 112.9600 Stores b22.

151.36 OB 151.3600 Stores b23.

´< Á 151.3600 Designates matrix D as result

matrix.

l> B b 2 3 Recalls descriptor of constant

matrix.

l> A A 2 2 Recalls descriptor of coefficient

matrix A into X-register, moving

descriptor of constant matrix B

into Y-register.

÷ d 2 3 Calculates A
-1

B and stores result

in matrix D.

lÁ 186.0000 Recalls d11, the weight of cabbage

for the first week.

lÁ 141.0000 Recalls d12 the weight of cabbage

for the second week.

lÁ 215.0000 Recalls d13.

lÁ 88.0000 Recalls d21.

lÁ 92.0000 Recalls d22.

lÁ 116.0000 Recalls d23.

´U 116.0000 Deactivates User mode.

* Note that you did not need to press ´> 1 before beginning to store the elements of matrix B. This

is because after you stored the last element of matrix A, the row and column numbers in R0 and R1 were

automatically reset to 1.

 Section 12: Calculating with Matrices 159

Silas' deliveries were:

 Week

 1 2 3

Cabbage (kg) 186 141 215

Broccoli (kg) 88 92 116

Calculating the Residual

The HP-15C enables you to calculate the residual, that is, the matrix

Residual = R–YX

where R is the result matrix and X and Y are the matrices specified in the

X- and Y-registers.

This capability is useful, for example, in doing iterative refinement on the

solution of a system of equations and for linear regression problems. For

example, if C is a possible solution for AX = B, then B – AC indicates how

well this solution satisfies the equation. (Refer to the HP-15C Advanced

Functions Handbook for information about iterative refinement and linear

regression.)

The residual function (> 6) uses the current contents of the result

matrix and the matrices specified in the X- and Y-registers to calculate the

residual defined above. The residual is stored in the result matrix, replacing

the original result matrix. A matrix specified in the X- or Y-register can not

be the result matrix.

Using > 6 rather than * and - gives a result with improved

accuracy, particularly if the residual is small compared to the matrices being

subtracted.

To calculate the residual:

1. Enter the descriptor of the Y matrix into the Y-register.

2. Enter the descriptor of the X matrix into the X-register.

3. Designate the R matrix as the result matrix.

4. Press ´> 6. The residual replaces the original result

matrix (R). The descriptor of the result matrix is placed in the X-

register.

160 Section 12: Calculating with Matrices

Using Matrices in LU Form

As noted earlier, two matrix operations (calculating a determinant and

solving the matrix equation (AX = B) create an LU decomposition of the

matrix specified in the X-register. The descriptor of such a matrix has two

dashes following the matrix name. A matrix in LU form has elements that

differ from the elements of the original matrix.

However, the descriptor for a matrix in LU form can be used in place of the

descriptor for the original matrix for operations involving the inverse of the

matrix and for the determinant operation. That is, either the original matrix

or its LU decomposition can be used for these operations:

∕

÷ for the matrix in the X-register

> 9

For these three functions, using the LU form of the matrix to be inverted

gives a result that is identical to that using the original matrix.

As an example, if you solved the matrix equation AX = B, matrix A would

be changed to its LU form. If you wanted to change the B matrix and solve

the equation again, you could do so without changing the A matrix – the LU

matrix will give the correct solution.

For all other matrix operations, a matrix that is an LU decomposition is not

recognized as representing its original matrix. Instead, the elements of the

LU matrix are used just as they appear in matrix memory and the result is

not the result you would obtain using the original matrix.

Calculations With Complex Matrices

The HP-15C enables you to perform matrix multiplication and matrix

inversion with complex matrices (that is, matrices whose elements are

complex numbers) and to solve systems of complex equations (that is,

equations whose coefficients and variables are complex).

However, the HP-15C stores and operates on only real matrices. The

capability of doing calculations with complex matrices is completely

independent of the capability of doing calculations with complex numbers

described in the preceding section. You don’t need to activate Complex

mode for calculations with complex matrices.

 Section 12: Calculating with Matrices 161

Instead, calculations with complex matrices are performed by using real

matrices derived from the original complex matrices – in a manner to be

described below – and performing certain transformations in addition to the

regular matrix operations. These transformations are performed by four

calculator functions. This section will describe how to do these calculations.

(There are more examples of calculations with complex matrices in the

HP-15C Advanced Functions Handbook.)

Storing the Elements of a Complex Matrix

Consider an m×n complex matrix Z = X + iY, where X and Y are real

m×n matrices. This matrix can be represented in the calculator as a

2m×n ―partitioned‖ matrix:

PartImaginary

Part Real

}

}

Y

X








P

Z

The superscript P signifies that the complex matrix is represented by a

partitioned matrix.

All of the elements of Z
P
 are real numbers – those in the upper half

represent the elements of the real part (matrix X), those in the lower half

represent the elements of the imaginary part (matrix Y). The elements of Z
P

are stored in one of the five matrices (A, for example) in the usual manner,

as described earlier in this section.

For example, if Z = X + iY, where

, and
2221

1211

2221

1211



















yy

yy

xx

xx
YX

then Z can be represented in the calculator by































2221

1211

2221

1211

yy

yy

xx

xx

P

Y

X
ZA .

162 Section 12: Calculating with Matrices

Suppose you need to do a calculation with a complex matrix that is not

written as the sum of a real matrix and an imaginary matrix – as was the

matrix Z in the example above – but rather written with an entire complex

number in each element, such as















22222121

12121111

iyxiyx

iyxiyx
Z .

This matrix can be represented in the calculator by a real matrix that looks

very similar – one that is derived simply by ignoring the i and the + sign.

The 2 × 2 matrix Z shown above, for example, can be represented in the

calculator in ―complex‖ form by the 2 × 4 matrix.











22222121

12121111

yxyx

yxyx
C

ZA .

The superscript C signifies that the complex matrix is represented in a

"complex-like" form.

Although a complex matrix can be initially represented in the calculator by

a matrix of the form shown for Z
C
, the transformations used for multiplying

and inverting a complex matrix presume that the matrix is represented by a

matrix of the form shown for Z
P
. The HP-15C provides two transformations

that convert the representation of a complex matrix between Z
C
 and Z

P
:

Pressing Transforms Into

´p Z
C
 Z

P

| c Z
P
 Z

C

To do either of these transformations, recall the descriptor of Z
C
 or Z

P
 into

the display, then press the keys shown above. The transformation is done to

the specified matrix; the result matrix is not affected.

 Section 12: Calculating with Matrices 163

Example: Store the complex matrix















ii

ii

8351

2734
Z

in the form Z
C
, since it is written in a form that shows Z

C
. Then transform

Z
C
 into the form Z

P
.

You can do this by storing the elements of Z
C

in matrix A and then using

the p function, where

Keystrokes Display

´> 0 Clears all matrices.

2 v 4
´mA

 4.0000 Dimensions matrix A to be

2×4.

´> 1 4.0000 Sets beginning row and

column numbers in R0 and

R1 to 1.

´U 4.0000 Activates User mode.

4 OA 4.0000 Stores a11.

3 OA 3.0000 Stores a12.

7 OA 7.0000 Stores a13.

2 “ OA -2.0000 Stores a14.

1 OA 1.0000 Stores a21.

5 OA 5.0000 Stores a22.

3 OA 3.0000 Stores a23.

8 OA 8.0000 Stores a24.

´U 8 0000 Deactivates User mode.

l> A A 2 4 Display descriptor of

matrix A.

´ p A 4 2 Transforms Z
C

into Z
P
 and

redimensions matrix A.

.
8351

2734







 


c
ZA

164 Section 12: Calculating with Matrices

Matrix A now represents the complex matrix Z in Z
P
 form:

PartImaginary

Part Real

.

85

23

31

74

}
}






















 P

ZA

The Complex Transformations Between ZP and Z

An additional transformation must be done when you want to calculate the

product of two complex matrices, and still another when you want to

calculate the inverse of a complex matrix. These transformations convert

between the Z
P

representation of an m×n complex matrix and a 2m×2n

partitioned matrix of the following form:








 


XY

YX
Z .

The matrix created by the > 2 transformation has twice as many

elements as Z
P
.

For example, the matrices below show how is related to Z
P
.




























6154

5461~

54

61
ZZ

P

The transformations that convert the representation of a complex matrix

between Z
P
 and are shown in the following table.

Pressing Transforms Into

´ > 2 Z
P

´ > 3 Z
P

To do either of these transformations, recall the descriptor of Z
P

or into

the display, then press the keys shown above. The transformation is done to

the specified matrix; the result matrix is not affected.

 Section 12: Calculating with Matrices 165

Inverting a Complex Matrix

You can calculate the inverse of a complex matrix by using the fact that

()
-1

 = (
-1

).

 To calculate inverse, Z
-1

, of a complex matrix Z:

1. Store the elements of Z in memory, in the form either of Z
P
 or of Z

C

2. Recall the descriptor of the matrix representing Z into the display.

3. If the elements of Z were entered in the form Z
C
, press ´p to

transform Z
C
 into Z

P

4. Press ´ > 2 to transform Z
P
 into .

5. Designate a matrix as the result matrix. It may be the same as the

matrix in which is stored.

6. Press ∕. This calculates ()
-1

, which is equal to (
-1

). The values

of these matrix elements are stored in the result matrix, and the

descriptor of the result matrix is placed in the X-register.

7. Press ´ > 3 to transform (
-1

) into (Z
-1

)
P
.

8. If you want the inverse in the form (Z
-1

)
C
, press | c

You can derive the complex elements of Z
-1

 by recalling the elements of Z
P

or Z
C
 and then combining them as described earlier.

Example: Calculate the inverse of the complex matrix Z from the previous

example.
























85

23

31

74

P
ZA .

Keystrokes Display

l>A A 4 2 Recalls descriptor of matrix A.

´ > 2 A 4 4 Transforms Z
P
 into and

redimensions matrix A.

166 Section 12: Calculating with Matrices

Keystrokes Display

´ <

B

A 4 4 Designates B as the result

matrix.

∕ b 4 4 Calculates ()
-1

 = (
-1

) and

places the result in matrix B.

´> 3 b 4 2 Transforms (
-1

) into

(
-1

)
P
.

The representation of Z
-1

 in partitioned form is contained in matrix B.

PartImaginary

Part Real

1315.01691.0

0022.02829.0

1017.00122.0

2420.00254.0

}
}





























B

Multiplying Complex Matrices

The product of two complex matrices can be calculated by using the fact

that (YX)
P
 =

P
.

To calculate YX, where Y and X are complex matrices:

1. Store the elements of Y and X in memory, in the form either of

Z
P
 or Z

C
.

2. Recall the descriptor of the matrix representing Y into the

display.

3. If the elements of Y were entered in the form of Y
C
, press

´p to transform Y
C

into Y
P
.

4. Press ´> 2 to transform Y
P
 into .

5. Recall the descriptor of the matrix representing X into the

display.

6. If the elements of X were entered in the form X
C
, press

´p to transform X
C
 into X

P
.

7. Designate the result matrix; it must not be the same matrix as

either of the other two.

 Section 12: Calculating with Matrices 167

8. Press * to calculate X
P
 = (YX)

P
. The values of these matrix

elements are placed in the result matrix, and the descriptor of

the result matrix is placed in the X-register.

9. If you want the product in the form (YX)
C
, press |c

Note that you don't transform X
P

into .

You can derive the complex elements of the matrix product YX by recalling

the elements of (XY)
P
 or (YX)

C
and combining them according to the

conventions described earlier.

Example: Calculate the product ZZ
-1

, where Z is the complex matrix given

in the preceding example.

Since elements representing both matrices are already stored (in A and

(Z
-1

)
P
 in B), skip steps 1, 3, 4, and 6.

Keystrokes Display

l>A A 4 4 Displays descriptor of matrix A.

l>B b 4 2 Displays descriptor of matrix

B.

´<C b 4 2 Designates C as result matrix.

* C 4 2 Calculates (Z
-1

)
P
 = (ZZ

-1
)

P
.

´U C 4 2 Activates User mode.

lC C 1,1 Matrix C, row 1, column 1.

(Displayed momentarily while

last key held down.)

 1.0000 Value of c11.

lC –2.8500 –10 Value of c12.

lC –4.0000 –11 Value of c21.

lC 1.0000 Value of c22.

lC 1.0000 –11 Value of c31.

lC 3.8000 –10 Value of c32.

lC 1.0000 –11 Value of c41.

lC –1.0500 –10 Value of c42.

´U –1.0500 –10 Deactivates User mode.

168 Section 12: Calculating with Matrices

Writing down the elements of C,

 P1

1011

1011

11

10

100500.1100000.1

108000.3100000.1

0000.1100000.4

108500.20000.1









































 ZZC ,

where the upper half of matrix C is the real part of ZZ
-1

 and the lower half

is the imaginary part. Therefore, by inspection of matrix C,












































1011

1111

11

10
1

100500.1100000.1

108000.3100000.1

0000.1100000.4

108500.20000.1

i

ZZ

As expected,




















00

00

10

011 i-
ZZ

Solving the Complex Equation AX = B

You can solve the complex matrix equation AX = B by finding X = A
-1

B.

Do this by calculating X
P
 = (Ã)

-1
 B

P
.

To solve the equation AX = B, where A, X, and B are complex matrices:

1. Store the elements of A and B in memory, in the form either of Z
P

or

of Z
C
.

2. Recall the descriptor of the matrix representing B into the display.

3. If the elements of B were entered in the form B
C
, press ´p to

transform B
C
 into B

P
.

 Section 12: Calculating with Matrices 169

4. Recall the descriptor of the matrix representing A into the display.

5. If the elements of A were entered in the form of A
C
, press ´

p to transform A
C

into A
P
.

6. Press ´> 2 to transform A
P

into Ã.

7. Designate the result matrix; it must not be the same as the matrix

representing A.

8. Press ÷; this calculates X
P
. The values of these matrix elements

are placed in the result matrix, and the descriptor of the result matrix

is placed in the X-register.

9. If you want the solution in the form X
C
, press |c.

Note that you don't transform B
P
 into .

You can derive the complex elements of the solution X by recalling the

elements of X
P
 or X

C
 and combining them according to the conventions

described earlier.

Example: Engineering student A. C. Dimmer wants to analyze the

electrical circuit shown below. The impedances of the components are

indicated in complex form. Determine the complex representation of the

currents I1 and I2.

This system can be represented by the complex matrix equation































0

5

30)(200200

20020010

2I

I

ii

ii 1

or AX = B.

170 Section 12: Calculating with Matrices

In partitioned form,
















































0

0

0

5

 and

170200

200200

00

010

BA ,

where the zero elements correspond to real and imaginary parts with zero

value.

Keystrokes Display

4 v2´mA 2.0000 Dimensions matrix A to be

4×2.

´> 1 2.0000 Set beginning row and column

numbers in R0 and R1 to 1.

´U 2.0000 Activates User mode.

10 OA 10.0000 Stores a11.

0 O A 0.0000 Stores a12.

OA 0.0000 Stores a21.

OA 0.0000 Stores a22.

200 OA 200.0000 Stores a31.

“OA –200.0000 Stores a32.

OA –200.0000 Stores a41.

170 OA 170.0000 Stores a42.

4 v 1´m

B

 1.0000 Dimensions matrix B to be

4×1.

0 O>B 0.0000 Stores value 0 in all elements

of B.

5 v 1 v 1.0000 Specifies value 5 for row 1,

column 1.

O|B 5.0000 Stores value 5 in b11.

l> B b 4 1 Recalls descriptor for matrix

B.

l> A A 4 2 Places descriptor for matrix A

into X-register, moving

descriptor for matrix B into Y-

register.

 Section 12: Calculating with Matrices 171

Keystrokes Display

´> 2 A 4 4 Transforms A
P
 into Ã.

´< C A 4 4 Designates matrix C as

result matrix.

÷ C 4 1

Calculates X
P
 and stores

in C.

|c C 2 2 Transforms X
P

into X
C
.

lC 0.0372 Recalls c11.

lC 0.1311 Recalls c12.

lC 0.0437 Recalls c21.

lC 0.1543 Recalls c22.

´U 0.1543 Deactivates User mode.

´> 0 0.1543 Redimensions all matrices

to 0×0.

The currents, represented by the complex matrix X, can be derived from C
























i

i

I

I

2

1

0.15430.0437

0.13110.0372
X

Solving the matrix equation in the preceding example required 24 registers

of matrix memory – 16 for the 4×4 matrix A (which was originally entered

as a 4×2 matrix representing a 2×2 complex matrix), and four each for the

matrices B and C (each representing a 2×1 complex matrix). (However, you

would have used four fewer registers if the result matrix were matrix B.)

Note that since X and B are not restricted to be vectors (that is, single-

column matrices), X and B could have required more memory.

The HP-15C contains sufficient memory to solve, using the method

described above, the complex matrix equation AX = B with X and B having

up to six columns if A is 2×2, or up to two columns if A is 3×3.
*
 (The

allowable number of columns doubles if the constant matrix B is used as the

result matrix.) If X and B have more columns, or if A is 4×4, you can solve

the equation using the alternate method below. This method differs from the

preceding one in that it involves separate inversion and multiplication

operations and fewer registers.

* If all available memory space is dimensioned to the common pool (W: 1 64 0-0). Refer to appendix C,

Memory Allocation.

172 Section 12: Calculating with Matrices

1. Store the elements of A in memory, in the form either of A
P
 or of

A
C
.

2. Recall the descriptor of the matrix representing A into the display.

3. If the elements of A were entered in the form A
C
, press ´ p

to transform A
C
 into A

P
.

4. Press ´> 2 to transform A
P
 into Ã.

5. Press O< to designate the matrix representing A as the

result matrix.

6. Press ∕ to calculate (Ã)
-1

.

7. Redimension A to have half the number of rows as indicated in the

display of its descriptor after the preceding step.

8. Store the elements of B in memory, in the form either of B
P
 or

of B
C
.

9. Recall the descriptor of the matrix representing A into the display.

10. Recall the descriptor of the matrix representing B into the display.

11. If the elements of B were entered in the form B
C
, press ´p to

transform B
C
 into B

P
.

12. Press ´> 2 to transform B
P
 into

13. Designate the result matrix; it must not be the same matrix as either

of the other two.

14. Press *.

15. Press ´> 4 to transpose the result matrix.

16. Press ´> 2.

17. Redimension the result matrix to have half the number of rows as

indicated in the display of its descriptor after the preceding step.

18. Press l< to recall the descriptor of the result matrix.

19. Press ´> 4 to calculate X
P
.

20. If you want the solution in the form X
C
, press |c

 Section 12: Calculating with Matrices 173

A problem using this procedure is given in the HP-15C Advanced Functions

Handbook under Solving a Large System of Complex Equations.

Miscellaneous Operations Involving Matrices

Using a Matrix Element With Register Operations

If a letter key specifying a matrix is pressed after any of the following

function keys, the operation is performed using the matrix element specified

by the row and column numbers in R0 and R1, just as though it were a data

storage register.

O
*
 l

*

O{+, -, *, ÷} l{+, -, *,
÷}

e I

X

Using Matrix Descriptors in the Index Register

In certain applications, you may want to perform a programmed sequence

of matrix operations using any of the matrices A through E. In this

situation, the matrix operations can refer to whatever matrix descriptor is

stored in the index register (RI).

If the Index register contains a matrix descriptor:

 Pressing % after any of the functions listed above performs the

operations using the element specified by R0 and R1 and the matrix

specified in RI.

 Pressing % after O| or l| performs the operation

using the element specified by the row and column numbers in the

Y- and X-registers and the matrix specified in RI.

* Also, in User mode the row and column numbers in R0 and R1 are incremented according to the

dimensions of the specified matrix.

174 Section 12: Calculating with Matrices

 Pressing ´mV dimensions the matrix specified in RI

according to the dimensions in the X- and Y-registers.

 Pressing lmV recalls to the X- and Y-registers the

dimensions of the matrix specified in RI.

 Pressing GV or tV has the same result as pressing

G or t followed by the letter of the matrix specified in RI.

(This is not actually a matrix operation – only the letter in the

matrix descriptor is used.)

Conditional Tests on Matrix Descriptors

Four conditional tests – ~, T 0 (x≠ 0), T 5 (x = y), and T

6 (x≠y) – can be performed with matrix descriptors in the X- and Y-

registers, Conditional tests can be used to control program execution, as

described in section 8.

If a matrix descriptor is in the X-register, the result of ~ will be false

and the result of T 0 will be true (regardless of the element values in

the matrix.)

If matrix descriptors are in the X- and Y-registers when T 5 or T 6

conditional test is performed, x and y are equal if the same descriptor is in

the X- and Y-registers, and not equal otherwise. The comparison is made

between the descriptors themselves, not between the elements of the

specified matrices.

Other conditional tests can't be used with matrix descriptors.

Stack Operation for Matrix Calculations

During matrix calculations, the contents of the stack registers shift much

like they do during numeric calculations.

For some matrix calculations, the result is stored in the result matrix. The

arguments – one or two descriptors or numbers in the X-register or the X-

and Y-registers – are combined by the operation, and the descriptor of the

result matrix is placed in the X-register. (The argument from the X-register

is placed in the LAST X register.)

 Section 12: Calculating with Matrices 175

Several matrix functions operate on the matrix specified in the X-register

only and store the result in the same matrix. For these operations the

contents of the stack (including the LAST X register) are not moved –

although the display changes to show the new dimensions if necessary.

For the > 7, > 8, and > 9 functions, the matrix

descriptor specified in the X-register is placed in the LAST X register and

the norm or (for > 9) the determinant is placed in the X-register. The

Y-, Z-, and T-registers aren't changed.

When you recall descriptors or matrix elements into the X-register (with the

stack enabled), other descriptors and numbers already in the stack move up

in the stack – and the contents of the T-register are lost. (The LAST X

register is not changed.) When you store descriptors or matrix elements, the

stack (and the LAST X register) isn't changed.

In contrast to the operation described above, the O| and l|

functions do not affect the LAST X register and operate as shown on the

next page.

176 Section 12: Calculating with Matrices

Using Matrix Operations in a Program

If the calculator is in User mode during program entry when you enter a

O or l{A through E, %} instruction to store or recall a

matrix element, a u replaces the dash usually displayed after the line

number. When this line is executed in a running program, it operates as

though the calculator were in User mode. That is, the row and column

numbers in R0 and R1 are automatically incremented according to the

dimensions of the specified matrix. This allows you to access elements

sequentially. (The USER annunciator has no effect during program

execution.)

In addition, when the last element is accessed by the ―User‖ O or l
instruction – when R0 and R1 are returned to 1 – program execution skips

the next line. This is useful for programming a loop that stores or recalls

each matrix element, then continues executing the program. For example,

the following sequence squares all elements of matrix D:

 Section 12: Calculating with Matrices 177

The > 7 (row norm) and > 8 (Frobenius norm) functions also

operate as conditional branching instructions in a program. If the X-register

contains a matrix descriptor, these functions calculate the norm in the usual

manner, and program execution continues with the next program line. If the

X-register contains a number, program execution skips the next line. In both

cases, the original contents of the X-register are stored in the LAST X

register. This is useful for testing whether a matrix descriptor is in the X-

register during a program.

Summary of Matrix Functions

Keystroke(s) Results

|c Transforms Z
P
 into Z

C
.

“ Changes sign of all elements in matrix specified in

X-register.

´m {A

through E, V}

Dimensions specified matrix.

´> 0 Dimensions all matrices to 0×0.

´> 1 Sets row and column numbers in R0 and R1 to 1.

´> 2 Transform Z
P

into .

´> 3 Transforms into Z
P
.

´> 4 Calculate transpose of matrix specified in X-register.

´> 5 Multiplies transpose of matrix specified in Y-

register with matrix specified in X-register. Stores in

178 Section 12: Calculating with Matrices

Keystroke(s) Results

result matrix.

´> 6 Calculates residual in result matrix.

´> 7 Calculates row norm of matrix specified in X-

register.

´> 8 Calculates Frobenius or Euclidean norm of matrix

specified in X-register.

´> 9 Calculates determinant of matrix specified in X-

register, Place LU in result matrix.

´p Transforms Z
C

into Z
P
.

l{A through

E, %}
Recalls value from specified matrix, using row and

column numbers in R0 and R1.

l|{A
through E, %}

Recalls value from specified matrix using row and

column numbers in Y- and X-registers.

lm {A
through E, %}

Recalls dimensions of specified matrix into X- and

Y-registers.

l> {A
through E}

Displays descriptor of specified matrix.

l< Displays descriptor of result matrix.

´<{A
through E}

Designates specified matrix as result matrix.

O{A through

E %}

Stores value from display into element of specified

matrix, using row and column numbers in R0 and R1.

O|{A
through E %}

Stores value from Z-register into element of

specified matrix, using row and column numbers in

Y- and X-registers.

O> {A
through E}

If matrix descriptor is in display, copies all elements

of that matrix into corresponding elements of

specified matrix. If number is in display, stores that

value in all elements of specified matrix.

 Section 12: Calculating with Matrices 179

Keystroke(s) Results

O < Designates matrix specified in X-register as result

matrix.

´ U Row and column numbers in R0 and R1 are

automatically incremented each time O or l

{A through E, %} is pressed.

∕ Inverts matrix specified in X-register. Stores in result

matrix. Use ´ ∕ if User mode is on.

+, - If matrix descriptors specified in both X- and Y-

registers, adds or subtracts corresponding elements of

matrices specified. If matrix descriptor specified in only

one of these registers, performs addition or subtraction

with all elements in specified matrix and scalar in other

register. Stores in result matrix.

* If matrix descriptors specified in both X- and Y-

registers, calculates product of specified matrices (as

YX). If matrix specified in only one of these registers,

multiplies all elements in specified matrix by scalar in

other register. Stores in result matrix.

÷ If matrix descriptors specified in both X- and Y-

registers, multiplies inverse of matrix specified in X-

register with matrix specified in Y-register. If matrix

specified in only Y-register, divides all elements of

specified matrix by scalar in other register. If matrix

specified in only X-register, multiplies each element of

inverse of specified matrix by scalar in other register.

Stores in result matrix.

For Further Information

The HP-15C Advanced Functions Handbook presents more detailed and

technical aspects of the matrix functions in the HP-15C, including

applications. The topics include: least-squares calculations, solving

nonlinear equations, ill-conditioned and singular matrices, accuracy

considerations, iterative refinement, and creating the identity matrix.

180

Section 13

Finding the Roots

of an Equation

In many applications you need to solve equations of the form

f(x)=0.
*

This means finding the values of x that

satisfy the equation. Each such value

of x is called a root of the equation f(x)

= 0 and a zero of the function f(x).

These roots (or zeros) that are real

numbers are called real roots (or real

zeros). For many problems the roots of

an equation can be determined

analytically through algebraic

manipulation; in many other instances,

this is not possible. Numerical

techniques can be used to estimate the

roots when analytical methods are not suitable. When you use the _

key on your HP-15C, you utilize an advanced numerical technique that lets

you effectively and conveniently find real roots for a wide range of

equations.
†

Using _

In calculating roots, the _ operation repeatedly calls up and executes

a subroutine that you write for evaluating f(x).

* Actually, any equation with one variable can be expressed in this form. For example, f(x) = a is equivalent

to f(x) – a = 0, and f(x) = g(x) is equivalent to f(x) – g(x) = 0.

† The _ function does not use the imaginary stack. Refer to the HP-15C Advanced Functions

Handbook for information about complex roots.

 Section 13: Finding the Roots of an Equation 181

The basic rules for using _ are:

1. In Program mode, key in a subroutine that evaluates the function

f(x) that is to be equated to zero. This subroutine must begin with a

label instruction (´b label) and end up with a result for f(x) in

the X-register.

 In Run mode:

2. Key two initial estimates of the desired root, separated by v,

into the X- and Y-registers. These estimates merely indicate to the

calculator the approximate range of x in which it should initially

seek a root of f(x) = 0.

3. Press ´ _ followed by the label of your subroutine. The

calculator then searches for the desired zero of your function and

displays the result. If the function that you are analyzing equals zero

at more than one value of x, the routine will stop when it finds any

one of those values. To find additional values, you can key in

different initial estimates and use _ again.

Immediately before _ addresses your subroutine it places a value of x

in the X-, Y-, Z-, and T-registers. This value is then used by your subroutine

to calculate f(x). Because the entire stack is filled with the x-value, this

number is continually available to your subroutine. (The use of this

technique is described on page 41).

Example: Use _ to find the values of x for which

f(x) = x
2
 –3x – 10 = 0.

Using Horner's method (refer to page 79), you can rewrite f(x) so that it is

programmed more efficiently:

f(x) = (x – 3)x – 10.

In Program mode, key in the following subroutine to evaluate f(x).

Keystrokes Display

|¥ 000- Program mode.

´ CLEAR M 000- Clear program memory.

182 Section 13: Finding the Roots of an Equation

Keystrokes Display

´ b 0 001–42,21, 0 Begin with b instruction.

Subroutine assumes stack

loaded with x.

3 002– 3

- 003– 30 Calculate x – 3.

* 004– 20 Calculate (x – 3)x.

1 005– 1

0 006– 0

- 007– 30 Calculate (x – 3)x – 10.

| n 008– 43 32

In Run mode, key two initial estimates into the X- and Y-registers.

Try estimates of 0 and 10 to look for a positive root.

Keystrokes Display
*

| ¥ Run mode.

0 v 0.0000
Initial estimates.

10 10

You can now find the desired root by pressing ´_ 0. When you do

this, the calculator will not display the answer right away. The HP-15C uses

an iterative algorithm
†
 to estimate the root. The algorithm analyzes your

function by sampling it many times, perhaps a dozen times or more. It does

this by repeatedly executing your subroutine. Finding a root will usually

require about 2 to 10 seconds; but sometimes the process will require even

more time.

Press ´_ 0 and sit back while your HP-15C exhibits one of its

powerful capabilities. The display flashes running while _ is

operating.

* Press ´• 4 to obtain the displays shown here. The display setting does not influence the operation

of _.

† An algorithm is a step-by-step procedure for solving a mathematical problem. An iterative algorithm is one

containing a portion that is executed a number of times in the process of solving the problem.

 Section 13: Finding the Roots of an Equation 183

Keystrokes Display

´_ 0 5.0000 The desired root.

After the routine finds and displays the root, you can ensure that the

displayed number is indeed a root of f(x) = 0 by checking the stack. You have

seen that the display (X-register) contains the desired root. The Y-register

contains a previous estimate of the root, which should be very close to the

displayed root. The Z-register contains the value of your function

evaluated at the displayed root.

Keystrokes Display

) 5.0000 A previous estimate of the
root.

) 0.0000 Value of the function at the
root showing that f(x) = 0.

Quadratic equations, such as the one you are solving, can have two roots. If

you specify two new initial estimates, you can check for a second root. Try

estimates of 0 and -10 to look for a negative root.

Keystrokes Display

0 v 0.0000
Initial estimates.

10 “ –10

´ _ 0 –2.0000 The second root.

) –2.0000 A previous estimate of the

root.

) 0.0000 Value of f(x) at second root.

184 Section 13: Finding the Roots of an Equation

You have now found the two roots of f(x)

= 0. Note that this quadratic equation

could have been solved algebraically – and

you would have obtained the same roots

that you found using _.

G
G
r

The convenience and power of the _ key become more apparent

when you solve an equation for a root that cannot be determined

algebraically.

Example: Champion ridget hurler Chuck

Fahr throws a ridget with an upward

velocity of 50 meters/second. If the height

of the ridget is expressed as

h = 5000(1 – e
–t/20

) – 200t,

how long does it take for it to reach the

ground again? In this equation, h is the

height in meters and t is the time in seconds.

Solution: The desired solution is the positive value of t at which h = 0.

Use the following subroutine to calculate the height.

Keystrokes Display

| ¥ 000–

´ bA 001–42,21,11 Begin with label.

2 002– 2 Subroutine assumes t is

loaded in X-and Y-registers.

0 003– 0

÷ 004– 10

 Section 13: Finding the Roots of an Equation 185

Keystrokes Display

“ 005– 16 – t / 20.

' 006– 12

“ 007– 16 – e
– t / 20

.

1 008– 1

+ 009– 40 1 – e
– t / 20

.

5 010– 5

0 011– 0

0 012– 0

0 013– 0

* 014– 20 5000 (1 – e
– t / 20

).

® 015– 34 Brings another t-value

 into X-register.

2 016– 2

0 017– 0

0 018– 0

* 019– 20 200t.

- 020– 30 5000(1 – e
– t / 20

) – 200t.

| n 021– 43 32

Switch to Run mode, key in two initial estimates of the time (for example, 5

and 6 seconds) and execute _.

Keystrokes Display

|¥ Run mode.

5 v 5.0000
Initial estimates.

6 6

´_A 9.2843 The desired root.

Verify the root by reviewing the Y- and Z-registers.

Keystrokes Display

) 9.2843 A previous estimate of the root.

) 0.0000 Value of the function at the root

showing that h = 0.

186 Section 13: Finding the Roots of an Equation

Fahr's ridget falls to the ground

9.2843 seconds after he hurls it—a

remarkable toss.

When No Root Is Found

You have seen how the _ key estimates and displays a root of an

equation of the form f(x) = 0. However, it is possible that an equation has no

real roots (that is, there is no real value of x for which the equality is true).

Of course, you would not expect the calculator to find a root in this case.

Instead, it displays Error 8.

Example: Consider the equation

|x| = – 1.

which has no solution since the absolute

value function is never negative. Express

this equation in the required form

|x| + 1 = 0

and attempt to use _ to find a

solution.

G
r
G

Keystrokes Display

| ¥ 000– Program mode.

´b 1 001–42,21, 1

| a 002– 43 16

1 003– 1

+ 004– 40

| n 005– 43 32

 Section 13: Finding the Roots of an Equation 187

Because the absolute-value function is minimum near an argument of zero,

specify the initial estimates in that region, for instance 1 and -1. Then

attempt to find a root.

Keystrokes Display

| ¥ Run mode.

1 v 1.0000
Initial estimates.

1 “ –1

´ _ 1 Error 8 This display indicates that no

root was found.

− 0.0000 Clear error display.

As you can see, the HP-15C stopped seeking a root of f(x) = 0 when it

decided that none existed – at least not in the general range of x to which it

was initially directed. The Error 8 display does not indicate that an ―illegal‖

operation has been attempted; it merely states that no root was found where

_ presumed one might exist (based on your initial estimates).

If the HP-15C stops seeking a root and displays an error message, one of

these three types of conditions has occurred:

 If repeated iterations all produce a constant nonzero value for the

specified function, execution stops with the display Error 8.


If numerous samples indicate that the magnitude of the function

appears to have a nonzero minimum value in the area being

searched, execution stops with the display Error 8.

 If an improper argument is used in a mathematical operation as part

of your subroutine, execution stops with the display Error 0.

In the case of a constant function value, the routine can see no indication of

a tendency for the value to move toward zero. This can occur for a function

whose first 10 significant digits are constant (such as when its graph levels

off at a nonzero horizontal asymptote) or for a function with a relatively

broad, local ―flat‖ region in comparison to the range of x-values being tried.

In the case where the function's magnitude reaches a nonzero minimum, the

routine has logically pursued a sequence of samples for which the

magnitude has been getting smaller. However, it has not found a value of

x at which the function's graph touches or crosses the x-axis.

188 Section 13: Finding the Roots of an Equation

The final case points out a potential deficiency in the subroutine rather than

a limitation of the root-finding routine. Improper operations may sometimes

be avoided by specifying initial estimates that focus the search in a region

where such an outcome will not occur. However, the _ routine is very

aggressive and may sample the function over a wide range. It is a good

practice to have your subroutine test or adjust potentially improper

arguments prior to performing an operation (for instance, use a prior to

¤). Rescaling variables to avoid large numbers can also be helpful.

The success of the _ routine in locating a root depends primarily

upon the nature of the function it is analyzing and the initial estimates at

which it begins searching. The mere existence of a root does not ensure that

the casual use of the _ key will find it. If the function f(x) has a

nonzero horizontal asymptote or a local minimum of its magnitude, the

routine can be expected to find a root of f(x) = 0 only if the initial estimates

do not concentrate the search in one of these unproductive regions—and, of

course, if a root actually exists.

Choosing Initial Estimates

When you use _ to find the root of an equation, the two initial

estimates that you provide determine the values of the variable x at which

the routine begins its search. In general, the likelihood that you will find the

particular root you are seeking increases with the level of understanding that

you have about the function you are analyzing. Realistic, intelligent

estimates greatly facilitate the determination of a root.

The initial estimates that you use may be chosen in a number of ways:

If the variable x has a limited range in which it is conceptually meaningful

as a solution, it is reasonable to choose initial estimates within this range.

Frequently an equation that is applicable to a real problem has, in addition

to the desired solution, other roots that are physically meaningless. These

usually occur because the equation being analyzed is appropriate only

between certain limits of the variable. You should recognize this restriction

and interpret the results accordingly.

 Section 13: Finding the Roots of an Equation 189

If you have some knowledge of the behavior of the function f(x) as it varies

with different values of x, you are in a position to specify initial estimates in

the general vicinity of a zero of the function. You can also avoid the more

troublesome ranges of x such as those producing a relatively constant

function value or a minimum of the function's magnitude.

Example: Using a rectangular piece

of sheet metal 4 decimeters by 8

decimeters, an open-top box having a

volume of 7.5 cubic decimeters is to

be formed. How should the metal be

folded? (A taller box is preferred to a

shorter one.)

Solution: You need to find the height

of the box (that is, the amount to be

folded up along each of the four sides)

that gives the specified volume. If x is

the height (or amount folded up), the

length of the box is (8 – 2x) and the width is (4 – 2x). The volume V is

given by

V = (8 – 2x)(4 – 2x) x.

By expanding the expression and then using Horner's method (page 79), this

equation can be rewritten as

V = 4 ((x – 6) x + 8) x.

To get V= 7.5, find the values of x for which

f(x) = 4 ((x – 6) x + 8) x – 7.5 = 0.

The following subroutine calculates f(x):

Keystrokes Display

| ¥ 000– Program mode.

´b 3 001–42,21, 3 Label.

6 002– 6 Assumes stack loaded with x.

190 Section 13: Finding the Roots of an Equation

Keystrokes Display

- 003– 30

* 004– 20 (x – 6) x.

8 005– 8

+ 005– 40

* 007– 20 ((x – 6) x + 8) x.

4 008– 4

* 009– 20 4 ((x – 6) x + 8) x.

7 010– 7

. 011– 48

5 012– 5

- 013– 30

|n 014– 43 32

It seems reasonable that either a tall, narrow box or a short, flat box could

be formed having the desired volume. Because the taller box is preferred,

larger initial estimates of the height are reasonable. However, heights

greater than 2 decimeters are not physically possible (because the metal is

only 4 decimeters wide). Initial estimates of 1 and 2 decimeters are

therefore appropriate.

Find the desired height:

Keystrokes Display

| ¥ Run mode.

1 v 1.0000
Initial estimates.

2 2

´ _ 3 1.5000 The desired height.

) 1.5000 Previous estimate.

) 0.0000 f(x) at root.

 Section 13: Finding the Roots of an Equation 191

By making the height 1.5 decimeters, a

5.0×1.0×1.5-decimeter box is specified.

If you ignore the upper limit on the

height and use initial estimates of 3 and

4 decimeters (still less than the width),

you will obtain a height of 4.2026

decimeters – a root that is physically

meaningless. If you use small initial

estimates such as 0 and 1 decimeter,

you will obtain a height of 0.2974

decimeter – producing an undesirably

short, flat box.

As an aid for examining the behavior of a function, you can easily evaluate

the function at one or more values of x using your subroutine in program

memory. To do this, fill the stack with x. Execute the subroutine to calculate

the value of the function (press ´ letter label or G label.

The values you calculate can be plotted to give you a graph of the function.

This procedure is particularly useful for a function whose behavior you do

not know. A simple-looking function may have a graph with relatively

extreme variations that you might not anticipate. A root that occurs near a

localized variation may be hard to find unless you specify initial estimates

that are close to the root.

If you have no informed or intuitive concept of the nature of the function or

the location of the zero you are seeking, you can search for a solution using

trial-and-error. The success of finding a solution depends partially upon the

function itself. Trial-and-error is often – but not always – successful.

 If you specify two moderately large positive or negative estimates and

the function's graph does not have a horizontal asymptote, the routine

will seek a zero which might be the most positive or negative (unless

the function oscillates many times, as the trigonometric functions do).

 If you have already found a zero of the function, you can check for

another solution by specifying estimates that are relatively distant

from any known zeros.

Graph of f(x)

192 Section 13: Finding the Roots of an Equation

 Many functions exhibit special behavior when their arguments

approach zero. You can check your function to determine values of x

for which any argument within your function becomes zero, and then

specify estimates at or near those values.

Although two different initial estimates are usually supplied when using

_, you can also use _ with the same estimate in both the X- and

Y-registers. If the two estimates are identical, a second estimate is generated

internally. If your single estimate is nonzero, the second estimate differs

from your estimate by one count in the seventh significant digit. If your

estimate is zero, 1×10
-7

 is used as the second estimate. Then the root-finding

procedure continues as it normally would with two estimates.

Using _ in a Program

You can use the _ operation as part of a program. Be sure that the

program provides initial estimates in the X- and Y-registers just prior to the

_ operation. The _ routine stops with a value of x in the

X-register and the corresponding function value in the Z-register. If the x-

value is a root, the program proceeds to the next line. If the x-value is not a

root, the next line is skipped. (Refer also to Interpreting Results on page 226

for a further explanation of roots.) Essentially, the _ instruction tests

whether the x-value is a root and then proceeds according to the ―Do if

True‖ rule. The program can then handle the case of not finding a root, such

as by choosing new initial estimates or changing a function parameter.

The use of _ as an instruction in a program utilizes one of the seven

pending returns in the calculator. Since the subroutine called by _

utilizes another return, there can be only five other pending returns.

Executed from the keyboard, on the other hand, _ itself does not

utilize one of the pending returns, so that six pending returns are available

for subroutines within the subroutine called by _. Remember that if

all seven pending returns have been utilized, a call to another subroutine

will result in a display of Error 5. (Refer to page 105.)

 Section 13: Finding the Roots of an Equation 193

Restriction on the Use of _

The one restriction regarding the use of _ is that _ cannot be

used recursively. That is, you cannot use _ in a subroutine that is

called during the execution of _. If this situation occurs, execution

stops and Error 7 is displayed. It is possible, however, to use _ with

f thereby using the advanced capabilities of both of these keys.

Memory Requirements

_ requires five registers to operate. (Appendix C explains how they

are automatically allocated from memory.) If five unoccupied registers are

not available, _ will not run and Error 10 will be displayed.

A routine that combines _ and f requires 23 registers of space.

For Further Information

In appendix D, Advanced Use of _, additional techniques and

explanations for using _ are presented. These include:

 How _ works.

 Accuracy of the root.

 Interpreting results.

 Finding several roots.

 Limiting estimation time.

194

Section 14

Numerical Integration

Many problems in mathematics, science, and

engineering require calculating the definite

integral of a function. If the function is

denoted by f(x) and the interval of integration

is a to b, the integral can be expressed

mathematically as

.)(dxxfI
b

a

The quantity I can be interpreted

geometrically as the area of a region bounded by the graph of f(x), the

x-axis, and the limits x = a and x = b.
*

When an integral is difficult or impossible to evaluate by analytical

methods, it can be calculated using numerical techniques. Usually, this can

be done only with a fairly complicated computer program. With your

HP-15C, however, you can easily do numerical integration using the f

(integrate) key.
†

Using f

The basic rules for using f are:

1. In Program mode, key in a subroutine that evaluates the function f(x) that

you want to integrate. This subroutine must begin with a label

instruction (´b label) and end up with a value for f(x) in the X-

register.

* Provided that f(x) is nonnegative throughout the interval of integration.
† The f function does not use the imaginary stack. Refer to the HP-15C Advanced Functions Handbook

for information about using f in Complex mode.

 Section 14: Numerical Integration 195

 In Run mode:

2. Key the lower limit of integration (a) into the X-register, then press

v to lift it into the Y-register.

3. Key the upper limit of integration (b) in to the X-register.

4. Press ´ f followed by the label of your subroutine.

Example: Certain problems in physics and engineering require calculating

Bessel functions. The Bessel function of the first kind of order 0 can be

expressed as


π

0
0)sin (cos

π

1
)(dθθxxJ .

Find


π

0
0)(sin cos

π

1
(1) dθθJ .

In Program mode, key in the following subroutine to evaluate the function

f(θ) = cos (sin θ).

Keystrokes Display

|¥ 000– Program mode.

´ CLEAR M 000– Clear program memory.

´b 0 001–42,21, 0 Begin subroutine with a

b instruction.

Subroutine assumes a

value of θ is in X-register.

[002– 23 Calculate sin θ.

\ 003– 24 Calculate cos (sin θ).

|n 004– 43 32

Now, in Run mode key the lower limit of integration into the Y-register and

the upper limit into the X-register. For this particular problem, you also

need to specify Radians mode for the trigonometric functions.

196 Section 14: Numerical Integration

Keystrokes Display

| ¥ Run mode.

0 v 0.0000 Key lower limit, 0, into Y-

register.

| $ 3.1416 Key upper limit, π, into X-

register.

|R 3.1416 Specify Radians mode for

trigonometric functions.

Now you are ready to press ´f 0 to calculate the integral. When you

do so, you'll find that – just as with _ – the calculator will not display

the result right away, as it does with other operations. The HP-15C

calculates integrals using a sophisticated iterative algorithm. Briefly, this

algorithm evaluates f(x), the function to be integrated, at many values of x

between the limits of integration. At each of these values, the calculator

evaluates the function by executing the subroutine you write for that

purpose. When the calculator must execute the subroutine many times – as

it does when you press f – you can't expect any answer right away. Most

integrals will require on the order of 2 to 10 seconds; but some integrals

will require even more. Later on we'll discuss how you can decrease the

time somewhat; but for now press ´f 0 and take a break (or read

ahead) while the HP-15C takes care of the drudgery for you.

Keystrokes Display

´f 0 2.4040 
π
0 dθ θ)(sin cos .

In general, don't forget to multiply the value of the integral by whatever

constants, if any, are outside the integral. In this particular problem, we

need to multiply the integral by 1/ π to get J0 (1):

Keystrokes Display

|$ 3.1416

÷ 0.7652 J0 (1).

 Section 14: Numerical Integration 197

Before calling the subroutine you provide to evaluate f(x), the f
algorithm – just like the _ algorithm – places the value of x in the X-,

Y-, Z-, and T-registers. Because every stack register contains the x-value,

your subroutine can calculate with this number without having to recall it

from a storage register. The subroutines in the next two examples take

advantage of this feature. (A polynomial evaluation technique that assumes

the stack is filled with the value of x is discussed on page 79.)

Note: Since the calculator puts the value of x into all stack

registers, any numbers previously there will be replaced by x.

Therefore, if the stack contains intermediate results that you'll

need after you calculate an integral, store those numbers in

storage registers and recall them later.

Occasionally you may want to use the subroutine that you wrote

for the f operation to merely evaluate the function at some

value of x. If you do so with a function that gets x from the stack

more than once, be sure to fill the stack manually with the value

of x, by pressing vvv, before you execute the

subroutine.

Example: The Bessel function of the first kind of order 1 can be expressed

as

.)sin - (cos
π

1
)(

π

0
1  dθθxxJ 

Find

.)sin - (cos
π

1
)(

π

0
1  dθθ1J 

Key in the following subroutine that evaluates the function

f(θ) = cos (θ - sin θ).

Keystrokes Display

| ¥ 000- Program mode.

´ b 1 001-42,21, 1 Begin subroutine with a label.

198 Section 14: Numerical Integration

Keystrokes Display

[002– 23 Calculate sin θ.

- 003– 30 Since a value of θ will be

placed into the Y-register by

the f algorithm before it

executes this subroutine, the

- operation at this point

will calculate

(θ – sin θ).

\ 004– 24 Calculate cos (θ – sin θ).

|n 005– 43 32

In Run mode, key the limits of integration into the X- and Y-registers. Be

sure that the trigonometric mode is set to Radians, then press ´f 1 to

calculate the integral. Finally, multiply the integral by 1/π to calculate

J1 (1).

Keystrokes Display

|¥ Run mode.

0 v 0.0000 Key lower limit into

Y-register.

| $ 3.1416 Key upper limit into

X-register.

| R 3.1416 (If not already in

Radians mode.)

´f 1 1.3825

|$ ÷ 0.4401 J1 (1).

Example: Certain problems in

communications theory (for example, pulse

transmission through idealized networks)

require calculating an integral (sometimes

called the sine integral) of the form


t

dx
x

x
tSi

0

)sin(
)(.

 Section 14: Numerical Integration 199

Find Si(2).

Key in the following subroutine to evaluate the function f(x) = (sin x) / x.
*

Keystrokes Display

|¥ 000– Program mode.

´ b .2 001–42,21, .2 Begin subroutine with a b

instruction.

[002– 23 Calculate sin x.

® 003– 34 Since a value of x will be

placed in the Y-register by the

f algorithm before it

executes this subroutine, the

® operation at this point

will return x to the X-register

and move sin x to the Y-

register.

÷ 004– 10 Divide sin x by x.

| n 005– 43 32

Now key the limits of integration into the X- and Y-registers. In Radians

mode, press ´f .2 to calculate the integral.

Keystrokes Display

|¥ 0.4401 Run mode.

0 v 0.0000 Key lower limit into Y-

register.

2 2 Key upper limit, into X-

register.

| R 2.0000 (If not already in Radians

mode.)

´f .2 1.6054 Si(2).

* If the calculator attempted to evaluate f(x) = (sin x)/x at x = 0, the lower limit of integration, it would

terminate with Error 0 in the display (signifying an attempt to divide by zero), and the integral could not

be calculated. However, the f algorithm normally does not evaluate functions at either limit of

integration, so the calculator can calculate the integral of a function that is undefined there. Only when the

endpoints of the interval of integration are extremely close together, or the number of sample points is

extremely large, does the algorithm evaluate the function at the limits of integration.

200 Section 14: Numerical Integration

Accuracy of f

The accuracy of the integral of any function depends on the accuracy of the

function itself. Therefore, the accuracy of an integral calculated using f

is limited by the accuracy of the function calculated by your subroutine.
*
 To

specify the accuracy of the function, set the display format so that the

display shows no more than the number of digits that you consider accurate

in the function's values.
†
 If you specify fewer digits, the calculator will

compute the integral more quickly;
‡
 but it will presume that the function is

accurate to only the number of digits specified in the display format. We'll

show you how you can determine the accuracy of the calculated integral

after we say another word about the display format.

You'll recall that the HP-15C provides three types of display formatting:

•, i, and ^. Which display format should be used is largely a

matter of convenience, since for many integrals you'll get about the same

results using any of them (provided that the number of digits is specified

correctly, considering the magnitude of the function). Because it's more

convenient to use i display format when calculating most integrals,

we'll use i when calculating integrals in subsequent examples.

Note: Remember that once you have set the display format, you

can change the number of digits appearing in the display by storing

a number in the Index register and then pressing ´ • V,
´ i V, or ´ ^ V, as described in section 10.

This capability is especially useful when f is executed as part

of a program.

* It is possible that integrals of functions with certain characteristics (such as spikes or very rapid

oscillations) might be calculated inaccurately. However, this possibility is very small. The general

characteristics of functions that could cause problems, as well as techniques for dealing with them, are

discussed in appendix E.

† The accuracy of a calculated function depends on such considerations as the accuracy of empirical

constants in the function as well as round–off error in the calculations. These considerations are discussed

in more detail in the HP-15C Advanced Functions Handbook.

‡ The reason for this is discussed in appendix E.

 Section 14: Numerical Integration 201

Because the accuracy of any integral is limited by the accuracy of the

function (as indicated in the display format), the calculator cannot compute

the value of an integral exactly, but rather only approximates it. The

HP-15C places the uncertainty
*
 of an integral's approximation in the Y-

register at the same time it places the approximation in the X-register. To

determine the accuracy of an approximation, check its uncertainty by

pressing ®.

Example: With the display format set to i 2, calculate the integral in

the expression for J1(1) (from the example on page 197).

Keystrokes Display

0 v 0.0000 Key lower limit into

Y-register.

|$ 3.1416 Key upper limit into

X-register.

| R 3.1416 (If not already in Radians mode.)

´ i 2 3.14 00 Set display format to i 2.

´ f 1 1.3

8

00 Integral approximated in i 2.

® 1.8

8

-

03
Uncertainty of i 2

approximation.

The integral is 1.38 ± 0.00188. Since the uncertainty would not affect the

approximation until its third decimal place, you can consider all the

displayed digits in this approximation to be accurate. In general, though, it

is difficult to anticipate how many digits in an approximation will be

unaffected by its uncertainty. This depends on the particular function being

integrated, the limits of integration, and the display format.

* No algorithm for numerical integration can compute the exact difference between its approximation and

the actual integral. But the algorithm in the HP-15C estimates an ―upper bound‖ on this difference, which

is the uncertainty of the approximation. For example, if the integral Si (2) is 1.6054 ± 0.0001, the

approximation to the integral is 1.6054 and its uncertainty is 0.0001. This means that while we don't know

the exact difference between the actual integral and its approximation, we do know that it is highly

unlikely that the difference is bigger than 0.0001. (Note the first footnote on page 200.)

202 Section 14: Numerical Integration

If the uncertainty of an approximation is larger than what you choose to

tolerate, you can decrease it by specifying a greater number of digits in the

display format and repeating the approximation.
*

Whenever you want to repeat an approximation, you don't need to key the

limits of integration back into the X- and Y-registers. After an integral is

calculated, not only are the approximation and its uncertainty placed in the

X- and Y-registers, but in addition the upper limit of integration is placed in

the Z-register, and the lower limit is placed in the T-register. To return the

limits to the X- and Y-registers for calculating an integral again, simply

press)).

Example: For the integral in the expression for J1(l), you want an answer

accurate to four decimal places instead of only two.

Keystrokes Display

´ i 4 1.8826 -03 Set display format to i 4.

)) 3.1416 00 Roll down stack until upper

limit appears in X-register.

´f 1 1.3825 00 Integral approximated in

i4.

®
1.7091 -05

Uncertainty of i

4 approximation.

The uncertainty indicates that this approximation is accurate to at least four

decimal places. Note that the uncertainty of the i 4 approximation is

about one-hundredth as large as the uncertainty of the i 2

approximation. In general, the uncertainty of any f approximation

decreases by about a factor of 10 for each additional digit specified in the

display format.

* Provided that f(x) is still calculated accurately to the number of digits shown in the display.

 Section 14: Numerical Integration 203

In the preceding example, the uncertainty indicated that the approximation

might be correct to only four decimal places. If we temporarily display all

10 digits of the approximation, however, and compare it to the actual value

of the integral (actually, an approximation known to be accurate to a

sufficient number of decimal places), we find that the approximation is

actually more accurate than its uncertainty indicates.

Keystrokes Display

® 1.382

5

 00 Return approximation to

display.

´ CLEAR u 1382459676 All 10 digits of

approximation.

The value of this integral, correct to eight decimal places, is 1.38245969. The

calculator's approximation is accurate to seven decimal places rather than

only four. In fact, since the uncertainty of an approximation is calculated

very conservatively, the calculator's approximation, in most cases will be

more accurate than its uncertainty indicates. However, normally there is no

way to determine just how accurate an approximation is.

For a more detailed look at the accuracy and uncertainty of f

approximations, refer to appendix E.

Using f in a Program

f can appear as an instruction in a program provided that the program is

not called (as a subroutine) by f itself. In other words, f cannot be

used recursively. Consequently, you cannot use f to calculate multiple

integrals; if you attempt to do so, the calculator will halt with Error 7 in the

display. However, f can appear as an instruction in a subroutine called

by _.

The use of f as an instruction in a program utilizes one of the seven

pending returns in the calculator. Since the subroutine called by f

utilizes another return, there can be only five other pending returns.

Executed from the keyboard, on the other hand, f itself does not utilize

one of the pending returns, so that six pending returns are available for

subroutines within the subroutine called by f Remember that if all seven

pending returns have been utilized, a call to another subroutine will result in

a display of Error 5. (Refer to page 105.)

204 Section 14: Numerical Integration

Memory Requirements

f requires 23 registers to operate. (Appendix C explains how they are

automatically allocated from memory.) If 23 unoccupied registers are not

available, f will not run and Error 10 will be displayed.

A routine that combines f and _ also requires 23 registers of

space.

For Further Information

This section has given you the information you need to use f with

confidence over a wide range of applications. In appendix E, more esoteric

aspects of f are discussed. These include:

 How f works.

 Accuracy, uncertainty, and calculation time.

 Uncertainty and the display format.

 Conditions that could cause incorrect results.

 Conditions that prolong calculation time.

 Obtaining the current approximation to an integral.

205

Appendix A

Error Conditions
If you attempt a calculation containing an improper operation – say division

by zero – the display will show Error and a number. To clear an error

message, press any one key. This also restores the display prior to the Error

display.

The HP-15C has the following error messages. (The description of Error 2

includes a list of statistical formulas used.)

Error 0: Improper Mathematics Operation

Illegal argument to math routine:

÷, where x = 0.

y, where:

 out of Complex mode, y < 0 and x is noninteger;

 out of Complex mode, y = 0 and x ≤ 0; or

 in Complex mode, y = 0 and Re(x) ≤ 0.

¤, where, out of Complex mode, x < 0.

∕, where x = 0.

o, where:

 out of Complex mode, x ≤ 0; or

 in Complex mode, x = 0.

Z, where:

 out of Complex mode, x ≤ 0; or

 in Complex mode, x = 0.

,, where, out of Complex mode, │x│> l.

{, where, out of Complex mode, │x│> l.

O ÷, where x = 0.

l ÷, where the contents of the addressed register = 0.

∆, where the value in the Y-register is 0.

H \, where, out of Complex mode, x< 1.

H], where, out of Complex mode, │x│> 1.

c p, where:

206 Appendix A: Error Conditions

 x or y is noninteger;

 x < 0 or y < 0;
 x > y;

 x or y ≥ 10
10

.

Error 1: Improper Matrix Operation

Applying an operation other than a matrix operation to a matrix, that is,

attempting a nonmatrix operation while a matrix is in the relevant register

(whether the X- or Y-register or a storage register).

Error 2: Improper Statistics Operation

’ n = 0

S n ≤ 1

j n ≤ 1

L n ≤ 1

Error 2 is also displayed if division by zero or the square root of a negative

number would be required during computation with any of the following

formulas:

n

x
x




n

y
y




1)(


n n

M

x
s

1)(


n n

N

y
s

NM

P
r




M

P
A 

Mn

xPyM
B






 
Mn

xxnPyM
y




ˆ

where:

M = nΣx
2
 – (Σx)

2

N = nΣy
2
 – (Σy)

2

P = nΣxy – ΣxΣy

(A and B are the values returned by the operation

L, where y= Ax + B.)

 Appendix A: Error Conditions 207

Error 3: Improper Register Number or Matrix Element

Storage register named is nonexistent or matrix element indicated is

nonexistent.

Error 4: Improper Line Number or Label Call
Line number called for is currently unoccupied or nonexistent (>448); or

you have attempted to load a program line without available space; or the

label called does not exist; or User mode is on and you did not press ´

before ¤, ', @, y or ∕.

Error 5: Subroutine Level Too Deep

Subroutine nested more than seven deep.

Error 6: Improper Flag Number

Attempted a flag number >9.

Error 7: Recursive _ or f

A subroutine which is called by _ also contains a _ instruction;

a subroutine which is called by f also contains an f instruction.

Error 8: No Root

_ unable to find a root using given estimates.

Error 9: Service

Self-test discovered circuitry problem, or wrong key pressed during key

test.

Error 10: Insufficient Memory

There is not enough memory available to perform a given operation.

Error 11: Improper Matrix Argument

Inconsistent or improper matrix arguments for a given matrix operation:

208 Appendix A: Error Conditions

+ or -, where the dimensions are incompatible.

*, where:

 the dimensions are incompatible; or

 the result is one of the arguments.

∕, where the matrix is not square.

scalar/matrix ÷, where the matrix is not square.

÷, where:

 the matrix in the X-register is not square;

 the dimensions are incompatible; or

 the result is the matrix in the X-register.

> 2, where the input is a scalar; or the number of rows is odd.

> 3, where the input is a scalar; or the number of columns is odd.

> 4, where the input is scalar.

> 5, where:

 the input is a scalar;

  the dimensions are incompatible; or

  the result is one of the arguments.

> 6, where:

 the input is scalar;

 the dimensions are incompatible (including the result); or

 the result is one of the arguments.

> 9, where the matrix is not square.

l m V, where contents of RI are scalar.

m V, where contents of RI are scalar.

O <, where the input is scalar.

p, where the number of columns is odd.

c, where the number of rows is odd.

Pr Error (Power Error)

Continuous Memory interrupted and reset because of power failure.

209

Appendix B

Stack Lift and

the LAST X Register

The HP-15C calculator has been designed to operate in a natural manner.

As you have seen working through this handbook, most calculations do not

require you to think about the operation of the automatic memory stack.

There are occasions, however – especially as you delve into programming –

when you need to know the effect of a particular operation upon the stack.

The following explanation should help you.

Digit Entry Termination

Most operations on the calculator, whether executed as instructions in a

program or pressed from the keyboard, terminate digit entry. This means

that the calculator knows that any digits you key in after any of these

operations are part of a new number.

The only operations that do not terminate digit entry are the digit entry keys

themselves:

0 through 9 “ −

. ‛

Stack Lift

There are three types of operations on the calculator based on how they

affect stack lift. These are stack-disabling operations, stack-enabling

operations, and neutral operations.

When the calculator is in Complex mode, each operation affects both the

real and imaginary stacks. The stack lift effects are the same. In addition,

the number keyed into the display (real X-register) after any operation

except − or ` is accompanied by the placement of a zero in the

imaginary X-register.

210 Appendix B: Stack Lift and the LAST X Register

Disabling Operations

Stack Lift. There are four stack-disabling operations on the calculator.
*

These operations disable the stack lift, so that a number keyed in after one

of these disabling operations writes over the current number in the

displayed X-register and the stack does not lift. These special disabling

operations are:

v ` z w

Imaginary X-Register. A zero is placed in the imaginary X-register when

the next number following v, z, or w is keyed or recalled into

the display (real X-register). However, the next number keyed in or recalled

after − or ` does not change the contents of the imaginary X-

register.

Enabling Operations

Stack Lift. Most of the operations on the keyboard, including one-and two-

number mathematical functions like x and *, are stack-enabling

operations. This means that a number keyed in after one of these operations

will lift the stack (because the stack has been ―enabled‖ to lift). Both the

real and imaginary stacks are affected. (Recall that a shaded X-register

means that its contents will be written over when the next number is keyed

in or recalled.)

T t z y y

Z z y x x

Y y x 4.0000 4.0000

X x 4 4.0000 3

Keys: 4 v 3

 (Assumes
stack

enabled.)

 Stack
lifts.

 Stack
disabled.

 No stack
lift.

* Refer to footnote, page 36.

 Appendix B: Stack Lift and the LAST X Register 211

T y y y y

Z x x x x

Y 4.0000 53.1301 53.1301 53.1301

X 3 5.0000 0.0000 7

Keys: |: |` 7

 Stack
enabled.

 Stack
disabled.

 No stack
lift.

Imaginary X-Register. All enabling functions provide for a zero to be

placed in the imaginary X-register when the next number is keyed or

recalled into the display.

Neutral Operations

Stack Lift. Some operations, like •, are neutral; that is, they do not

alter the previous status of the stack lift. Thus, if you disable the stack lift

by pressing v, then press ´ • n and key in a new number, that

number will write over the number in the X-register and the stack will not

lift. Similarly, if you have previously enabled the stack lift by executing,

say ¤, then execute a • instruction followed by a digit entry

sequence, the stack will lift.
*

The following operations are neutral on the HP-15C:

• g U ¦

i t “ nnn CLEAR u ¥

^ ‚ CLEAR Q %†

D Â CLEAR ∑

R W ©

Imaginary X-Register. The above operations are also neutral with respect

to clearing the imaginary X-register.

* All digit entry functions are also neutral during digit entry. After digit entry termination, “ and ‛

are lift enabling, − is disabling.

† That is, the ´ % sequence used to view the imaginary X-register.

212 Appendix B: Stack Lift and the LAST X Register

LAST X Register

The following operations save x in the LAST X register:

- x H \ k

+ [H] ∆

* \ h :

÷] À ;

a , d p
*

q { r c*

‘ / N z

& P[' w

∕ P\ o j

! P] @ > 5 through 9

¤ H[Y f
†

* Except when used as a matrix function.

† f uses the LAST X register in a special way, as described in appendix E.

213

Appendix C

Memory Allocation

The Memory Space

Storage registers, program lines, and advanced function execution
*
 all draw

on a common memory space in the HP-15C. The availability of memory for

a specific purpose depends on the current allocation of memory, as well as

on the total memory capacity of the calculator.

Registers

Memory space in the HP-15C is allocated on the basis of registers. This

space is partitioned into two pools, which strictly define how a register may

be used. There is always a combined total of 67 registers in these two pools.

 The data storage pool contains registers which may be used only

for data storage. At power-up (Continuous Memory reset) this

equals 21 registers. This pool contains at least three registers at all

times: RI, R0, and R1.

 The common pool contains uncommitted registers available for

allocation to programming, matrices, the imaginary stack, and

_ and f operation. At power-up there are 46 uncommitted

registers in the common pool.

* The use of _, f, Complex mode, or matrices temporarily requires extra memory space, as

explained later in this appendix.

214 Appendix C: Memory Allocation

Total allocatable memory: 64 registers, numbered R2 through R65.

[(dd – 1) + uu + pp + (matrix elements) + (imaginary stack) + (_

and f)] = 64. For memory allocation and indirect addressing, data

registers R.0 through R.9 are referred to as R10 through R19.

 Appendix C: Memory Allocation 215

Memory Status (W)

To view the current memory configuration of the calculator, press |

W (memory), holding W to retain the display.
*
 The display will be

four numbers,

dd uu pp-b

where:

dd = the number of the highest-numbered register in the data storage

pool (making the total number of data registers dd + 2 because of R0

and RI);

uu = the number of uncommitted registers in the common pool;

pp = the number of registers containing program instructions; and

b = the number of bytes left before uu is decremented (to supply seven

more bytes of program memory) and pp is incremented.

The initial status of the HP-15C at power-up is:

19 46 0-0

The movable boundary between the data storage and common pools is

always between Rdd and Rdd + 1.

Memory Reallocation

There are 67 registers in memory, worth seven bytes each. Sixty-four of

these registers (R2 to R65) are interconvertible between the data storage and

common pools.

The m % Function

If you should require more common space (as for programming) or more

data storage space (but not both simultaneously!), you can make the

necessary register reallocation using m %.
†
 The procedure is:

* MEM is nonprogrammable.

† m (dimension) is so called because it is also used (with A through E or V) to dimension

matrices. Above, however, it is used (with %) to ―dimension‖ the size of the data storage pool.

216 Appendix C: Memory Allocation

1. Place dd, the number of the highest data storage register you want

allocated, into the display. 1dd65. The number of registers in the

uncommitted pool (and therefore potentially available for

programming) will be (65 – dd).

2. Press ´ m %.

There are two ways to review your allocation:

 Press lm % to recall into the stack the number of the

highest-allocated data storage register, dd. (Programmable.)

 Press | W (as explained above) to view a more complete

memory status (dd uu pp-b).

Keystrokes Display

(assuming a cleared program memory)
*

1 ´ m % 1.0000 R1, R0, and RI

allocated for data storage. Sixty-

four registers are uncommitted;

none contain program instructions.

| W (hold) 1 64 0-0

19 ´ m
%

19.0000 R19 (R.9) is the highest-numbered

data storage register. Forty-six

registers left in the common pool. l m % 19.0000

Restrictions on Reallocation

Continuous Memory will maintain the configuration you allocate until a

new m % is executed or Continuous Memory is reset. If you try to

allocate a number less than 1, dd = 1. If you try to allocate a number greater

than 65, Error 10 results.

* If program memory is not cleared, the number of uncommitted registers (uu) is less owing to allocation of

registers to program memory (pp). Therefore, pp would be >0 and b would vary.

 Appendix C: Memory Allocation 217

When converting registers, note that:

 You can convert registers from the common pool only if they are

uncommitted. If, for example, you try to convert registers which

contain program instructions, you will get an Error 10 (insufficient

memory).

 You can convert occupied registers from the data storage pool,

causing a loss of stored data. An Error 3 results if you try to

address a "lost" – that is, nonexistent – register. Therefore, it is

good practice to store data in the lowest-numbered registers first,

as these are the last to be converted.

Program Memory

As mentioned before, each register consists of seven bytes of memory.

Program instructions use one or two bytes of memory. Most program lines

use one byte; those using two bytes are listed on page 218.

The maximum programming capacity of the HP-15C is 448 program bytes

(64 convertible registers at seven bytes per register). At power-up, memory

can hold up to 322 program bytes (46 allocated registers at seven bytes

per register).

Automatic Program Memory Reallocation

Within the common register pool, program memory will automatically

expand as needed. One uncommitted register at a time, starting with the

highest-numbered register available, will be allocated to seven bytes of

program memory.

Conversion of Uncommitted Registers to Program Memory

218 Appendix C: Memory Allocation

Your very first program instruction will commit R65 (all seven bytes) from

an uncommitted register to a program register. Your eighth program

instruction commits R64, and so on, until the boundary of the common pool

is encountered. Registers from the data storage pool (at power-up, this is R19

and below) are not available for program memory without reallocating

registers using m %.

Two-Byte Program Instructions

The following instructions are the only ones which require two bytes of

calculator memory. (All others require only one byte.)

´ b . label ´ > {0 to 9}

t . label ´ X {2 to 9, .0 to .9}

| " (n or V) ´ e {2 to 9, .0 to .9}

|F (n or V) ´ I {2 to 9, .0 to .9}

| ? (n or V) O {+, -, *, ÷}

´ • (n or V) l {+, -, *, ÷}

´ i (n or V) O > {A to E}

´ ^ (n or V) O {A to E, %} in User

mode

´ _ l {A to E, %} in User

mode

´ f O | %

 l | %

Memory Requirements for the Advanced Functions

The four advanced functions require temporary register space from the

common register pool.

Function Registers Needed

_

f

5

23

 23 if executed
together

Complex Stack 5

Matrices 1 per matrix element

 Appendix C: Memory Allocation 219

For _ and f, allocation and deallocation of the required register

space takes place automatically.
*
 Memory is thereby allocated only for the

duration of these operations.

Space for the imaginary stack is allocated whenever ´ V, ´

}, or | F 8 is pressed. The imaginary stack is deallocated when

" 8 is executed.

Space for matrix registers is not allocated until you dimension it (using

m). Reallocation takes place when you redimension a matrix. >

0 dimensions all matrices to 0  0.

* If you should interrupt a _ or f routine in progress by pressing a key, you could deallocate its

registers by pressing |n or ´ CLEAR M in Run mode.

220

Appendix D

A Detailed Look at _

Section 13, Finding the Roots of an Equation, includes the basic

information needed for the effective use of the _ algorithm. This

appendix presents more advanced, supplemental considerations regarding

_.

How _ Works

You will be able to use _ most effectively by having a basic

understanding of how the algorithm works.

In the process of searching for a zero of the

specified function, the algorithm uses the

value of the function at two or three

previous estimates to approximate the shape

of the function’s graph. The algorithm uses

this shape to intelligently ―predict‖ a new

estimate where the graph might cross the x-

axis. The function subroutine is then

executed, computing the value of the

function at the new estimate. This procedure is performed repeatedly by the

_ algorithm.

If any two estimates yield function values

with opposite signs, the algorithm presumes

that the function's graph must cross the x-

axis in at least one place in the interval

between these estimates. The interval is

systematically narrowed until a root of the

equation is found.

A root is successfully found either if the

computed function value is equal to zero or

if two estimates, differing by one unit in their last significant digit, give

function values having opposite signs. In this case, execution stops and the

estimate is displayed.

 Appendix D: A Detailed Look at _ 221

As discussed in section 13, page 186, the occurrence of other situations in

the iteration process indicates the apparent absence of a function zero. The

reason is that there is no way to logically predict a new estimate that is

likely to have a function value closer to zero. In such cases, Error 8 is

displayed.

You should note that the initial estimates you provide are used to begin the

"prediction" process. By permitting more accurate predictions than might

otherwise occur, properly chosen estimates greatly facilitate the

determination of the root you seek.

The _ algorithm will always find a root provided one exists

(within the overflow bounds), if any one of four conditions are met:

 Any two estimates have function

values with opposite signs.

 The function is monotonic, meaning

that f(x) either always decreases or

else always increases as x is

increased.

222 Appendix D: A Detailed Look at _

 The function's graph is either

convex everywhere or concave

everywhere.

 The only local minima and

maxima of the function's graph

occur singly between adjacent

zeros of the function.

In addition, it is assumed that the _ algorithm will not be interrupted

by an improper operation.

Accuracy of the Root

When you use the _ key to find a root of an equation, the root is

found accurately. The displayed root either gives a calculated function value

(f(x)) exactly equal to zero or else is a 10-digit number virtually adjacent to

the place where the function's graph crosses the x-axis. Any such root has

an accuracy within two or three units in the 10th significant digit.

In most situations the calculated root is an accurate estimate of the

theoretical (infinitely precise) root of the equation. However, certain

conditions can cause the finite accuracy of the calculator to give a result that

appears to be inconsistent with your theoretical expectation.

 Appendix D: A Detailed Look at _ 223

If a calculation has a result whose magnitude is smaller than

1.000000000×10
-99

, the result is set equal to zero. This effect is referred to

as ―underflow.‖ If the subroutine that calculates your function encounters

underflow for a range of x and if this affects the value of the function, then a

root in this range may be expected to have some inaccuracy. For example,

the equation

x
4
= 0

has a root at x = 0. Because of underflow, _ produces a root of

1.5060 -25 (for initial estimates of 1 and 2). As another example,

consider the equation

l / x
2
 = 0

whose root is infinite in value. Because of underflow, _ gives a root

of 3.1707 49 (for initial estimates of 10 and 20). In each of these

examples, the algorithm has found a value of x for which the calculated

function value equals zero. By understanding the effect of underflow, you

can readily interpret results such as these.

The accuracy of a computed value sometimes can be adversely affected by

―round-off‖ error, by which an infinitely precise number is rounded to 10

significant digits. If your subroutine requires extra precision to properly

calculate the function for a range of x, the result obtained by _ may

be inaccurate. For example, the equation

| x
2
– 5 | = 0

has a root at x = 5 . Because no 10-digit number exactly equals 5 , the

result of using _ is Error 8 (for any initial estimates) because the

function never equals zero nor changes sign. On the other hand, the

equation

[(|x| + 1) + 10
15

]
2
= 10

30

has no roots because the left side of the equation is always greater than the

right side. However, because of round-off in the calculation of

f(x) = [(|x| + 1) + 10
15

]
2
- 10

30
,

224 Appendix D: A Detailed Look at _

the root 1.0000 is found for initial estimates of 1 and 2. By recognizing

situations in which round-off error may influence the operation of _,

you can evaluate the results accordingly and perhaps rewrite the function to

reduce the effects of round-off.

In a variety of practical applications, the parameters in an equation – or

perhaps the equation itself – are merely approximations. Physical

parameters have an inherent accuracy (or inaccuracy). Mathematical

representations of physical processes are only models of those processes,

accurate only to the extent that the underlying assumptions are true. An

awareness of these and other inaccuracies can be used to your advantage.

By structuring your subroutine to return a function value of zero when the

calculated value is negligible for practical purposes, you can usually save

considerable time in finding a root with _ – particularly for cases that

would normally take a long time.

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to heights

of 105 meters and more. In fact, Fahr’s hurls usually reach a height of

107 meters. How long does it take for his remarkable toss, described on

page 184 in section 13, to reach 107 meters?

Solution: The desired solution is the value of t at which h = 107. Enter the

subroutine from page 184 that calculates the height of the ridget. This

subroutine can be used in a new function subroutine to calculate

f(t) = h(t) – 107.

The following subroutine calculates f(t):

Keystrokes Display

| ¥ 000– Program mode.

´b B 001–42,21,12 Begin with new label.

G A 002– 32 11 Calculates h(t).

1 003– 1

0 004– 0

7 005– 7 Calculates h(t) – 107.

- 006– 30

|n 007– 43 32

 Appendix D: A Detailed Look at _ 225

In order to find the first time at which the height is 107 meters, use initial

estimates of 0 and 1 second and execute _ using B.

Keystrokes Display

| ¥ Run mode.

0 v 0.0000
Initial estimates.

1 1

´ _
B

4.1718 The desired root.

) 4.1718 A previous estimate of the root.

) 0.0000 Value of f(t) at root.

It takes 4.1718 seconds for the ridget to reach a height of exactly 107

meters. (It takes approximately two seconds to find this solution.)

However, suppose you assume that the function h(t) is accurate only to the

nearest whole meter. You can now change your subroutine to give f(t) = 0

whenever the calculated magnitude of f(t) is less than 0.5 meter. Change

your subroutine as follows:

Keystrokes Display

| ¥ 000- Program mode.

t “ 006 006– 30 Line before n instruction.

| a 007– 43 16 Magnitude of f(t).

. 008– 48 Accuracy

5 009– 5

| T 7 010–43,30, 7
Test for x > y and return

zero if accuracy >

magnitude (0.5 > | f(t) |).
| ` 011– 43 35

| T 0 012–43,30, 0 Test for x ≠ 0 and restore

| K 013– 43 36 f(t) if value is nonzero.

226 Appendix D: A Detailed Look at _

Execute _ again:

Keystrokes Display

| ¥ Run mode.

0 v 0.0000
Initial estimates.

1 1

´ v B 4.0681 The desired root.

) 4.0681 A previous estimate of the

root.

) 0.0000 Value of modified f(t) at root.

After 4.0681 seconds, the ridget is at a height of 107 ± 0.5 meters. This

solution, although different from the previous answer, is correct considering

the uncertainty of the height equation. (And this solution is found in just

under half the time of the earlier solution.)

Interpreting Results

The numbers that _ places in the X-, Y-, and Z-registers help you

evaluate the results of the search for a root of your equation.
*
 Even when no

root is found, the results are still significant.

When _ finds a root of the specified

equation, the root and function values are

placed in the X- and Z-registers. A function

value of zero is the expected result.

However, a nonzero function value is also

acceptable because it indicates that the

function's graph apparently crosses the x-

axis within an infinitesimal distance from

the calculated root. In most such cases, the

function value will be relatively close to

zero.

* The number in the T-register is the same number that was left in the Y-register by the final execution of

your function subroutine. Generally, this number is not of interest.

 Appendix D: A Detailed Look at _ 227

Special consideration is required for a different

type of situation in which _ finds a root

with a nonzero function value. If your

function's graph has a discontinuity that

crosses the x-axis, _ specifies as a root

an x-value adjacent to the discontinuity. This is

reasonable because a large change in the

function value between two adjacent values of

x might be the result of a very rapid,

continuous transition. Because this cannot be

resolved by the algorithm, the root is displayed

for you to interpret.

A function may have a pole, where its

magnitude approaches infinity. If the function

value changes sign at a pole, the corresponding

value of x looks like a possible root of your

equation, just as it would for any other

discontinuity crossing the x-axis. However, for

such functions, the function value placed into

the Z-register when that root is found will be

relatively large. If the pole occurs at a value of

x that is exactly represented with 10 digits, the

subroutine may try that value and halt prematurely with an error indication.

In this case, the _ operation will not be completed. Of course, this

may be avoided by the prudent use of a conditional statement in your

subroutine.

Example: In her analysis of the stresses in a

structural component, design consultant Lucy

I. Beame has determined that the shear stress

can be expressed as












1410for1000

100for350453
Q

23

x

xxx

where Q is the shear stress in newtons per

square meter and x is the distance from one end in meters. Write a

subroutine to compute the shear stress for any value of x. Use _ to

find the location of zero shear stress.

228 Appendix D: A Detailed Look at _

Solution: The equation for the shear stress for x between 0 and 10 is more

efficiently programmed after rewriting it using Horner's method:

Q = (3x–45)x
2
 + 350 for 0 < x < 10.

Keystrokes Display

| ¥ 000– Program mode.

´ b 2 001–42,21, 2

1 002– 1

Test for x range. 0 003– 0

|£ 004– 43 10

t 9 005– 22 9 Branch for x ≥ 10.

| ` 006– 43 35

3 007– 3

* 008– 20 3x.

4 009– 4

5 010– 5

- 011– 30 (3x – 45).

* 012– 20

* 013– 20 (3x – 45)x
2
.

3 014– 3

5 015– 5

0 016– 0

+ 017– 40 (3x – 45)x
2
 + 350.

| n 013– 43 32 End subroutine.

´ b 9 019–42,21, 9 Subroutine for x ≥ 10.

‛ 020– 26

3 021– 3 10
3
=1000.

| n 022– 43 32 End subroutine.

Execute _ using initial estimates of 7 and 14 to start at the outer end

of the beam and search for a point of zero shear stress.

 Appendix D: A Detailed Look at _ 229

Keystrokes Display

| ¥ Run mode.

7 v 7.0000
Initial estimates.

14 14

´_ 2 10.0000 Possible root.

)) 1,000.0000 Stress not zero.

The large stress value at the root points out that the _ routine has

found a discontinuity. This is a place on the beam where the stress quickly

changes from negative to positive. Start at the other end of the beam

(estimates of 0 and 7) and use _ again.

Keystrokes Display

0 v 0.0000
Initial estimates.

7 7

´ _ 2 3.1358 Possible root.

)) 2.0000 -07 Negligible stress.

Beame's beam has zero shear stress at

approximately 3.1358 meters and an

abrupt change of stress at 10.0000 meters.

When no root is found and Error 8 is displayed, you can press − or any

one key to clear the display and observe the estimate at which the function

was closest to zero. By also reviewing the numbers in the Y- and Z-

registers, you can often determine the nature of the function near the root

estimate and use this information constructively.

230 Appendix D: A Detailed Look at _

If the algorithm terminates its search near a

local minimum of the function's magnitude,

clear the Error 8 display and observe the

numbers in the X-, Y-, and Z-registers by

rolling down the stack. If the value of the

function saved in the Z-register is relatively

close to zero, it is possible that a root of

your equation has been found – the number

returned in the X-register may be a 10-digit

number very close to a theoretical root. You

can explore this potential minimum further by rolling the stack until the

returned estimates are back in the X- and Y-registers and then executing

_ again using these numbers as initial estimates. If an actual

minimum has been found, Error 8 will again be displayed and the number

in the X-register will be approximately the same as before, but possibly

closer to the actual location of the minimum.

Of course, you may deliberately use _ to find the location of a local

minimum of the function's magnitude. However, in this case you must be

careful to confine the search in the region of the minimum. Remember,

_ tries hard to find a zero of the function.

If the algorithm stops searching and

displays Error 8 because it is working on a

horizontal asymptote (when the value of

the function is essentially constant for a

large range of x), the estimates in X- and

Y-registers usually are significantly

different from each other. The number in

the Z-register is the value of the potential

asymptote. If you execute _ again

using as initial estimates the numbers that

were returned in the X- and Y-registers, a

horizontal asymptote may again cause Error 8, but with numbers in the X-

and Y-registers that will differ from the previous numbers. The value of the

function in the Z-register would then be about the same as that obtained

previously.

 Appendix D: A Detailed Look at _ 231

If Error 8 is displayed as a result of a search that

is concentrated in a local ―flat‖ region of the

function, the estimates in the X- and Y-registers

will be relatively close together or extremely

small. Execute _ again using for initial

estimates the numbers from the X- and Y-

registers (or perhaps two numbers somewhat

further apart). If the magnitude of the function is

neither a minimum nor constant, the algorithm

will eventually expand its search and find a

more significant result.

Example: Investigate the behavior of the function

x
exx

eexf



 2

23)(
10/

as evaluated in the following subroutine.

Keystrokes Display

|¥ 000– Program mode.

´ b .0 001–42,21,.0

| a 002– 43 16

“ 003– 16 x
e


.

' 004– 12

® 005– 34 Bring x-value into X-register.

| x 006– 43 11
x

ex
2 .

* 007– 20

' 008– 12

2 009– 2

* 010– 20
x

exe



2

2 .

“ 011– 16

® 012– 34 Bring x-value into X-register.

| a 013– 43 16

“ 014– 16

1 015– 1

0 016– 0

232 Appendix D: A Detailed Look at _

Keystrokes Display

÷ 017– 10 .10/x

' 018– 12

+ 019– 40
x

ex
e

x
e




 2

2
10/

.

3 020– 3

+ 021– 40
x

ex
e

x
e







2

2
10/

3 .

|n 022– 43 32

Use _ with the following single initial estimates: 10, 1, and 10
-20

.

Keystrokes Display

|¥ Run mode.

10 v 10.0000 Single estimate.

´ _ .0 Error 8

− 455.335 Best x-value.

) 48,026,721.85 Previous value.

) 1.0000 Function value.

| (| (455.4335 Restore the stack.

´ _.0 Error 8

− 48,026,721.85 Another x-value

)) 1.0000 Same function value

(an asymptote).

1 v 1.0000 Single estimate.

´ _.0 Error 8

− 2.1213 Best x-value.

) 2.1471 Previous value.

) 0.3788 Function value.

| (| (2.1213 Restore the stack.

´ _.0 Error 8

− 2.1213 Same x-value.

)) 0.3788 Same function value

(a minimum).

‛ “ 20
v

1.0000 –20 Single estimate.

 Appendix D: A Detailed Look at _ 233

Keystrokes Display

´ _.0 Error 8

− 1.0000 –20 Best x-value.

) 1.1250 –20 Previous value.

) 2.0000 Function value.

| (| (1.0000 –20 Restore the stack.

´ _ .0 Error 8

− 1.1250 –20 Another x-value.

) 1.5626 –16 Previous value.

) 2.0000 Same function value.

In each of the three cases, _ initially

searched for a root in a direction suggested by

the graph around the initial estimate. Using

10 as the initial estimate, _ found the

horizontal asymptote (value of 1.0000).

Using 1 as the initial estimate, a minimum of

0.3788 at x = 2.1213 was found. Using 10
–20

as the initial estimate, the function was

essentially constant (at a value of 2.0000) for

the small range of x that was sampled.

Finding Several Roots

Many equations that you encounter have more than one root. For this

reason, you will find it helpful to understand some techniques for finding

several roots of an equation.

The simplest method for finding several roots is to direct the root search in

different ranges of x where roots may exist. Your initial estimates specify

the range that is initially searched. This method was used for all examples

in section 13. You can often find the roots of an equation in this manner.

Another method is known as deflation. Deflation is a method by which roots are

"eliminated" from an equation. This involves modifying the equation so that the

first roots found are no longer roots, but the rest of the roots remain roots.

If a function f(x) has a value of zero at x = a, then the new function

f(x)/(x – a) will not approach zero in this region (if a is a simple root of

f(x) = 0). You can use this information to eliminate a known root. Simply

234 Appendix D: A Detailed Look at _

add a few program lines at the end of your function subroutine. These lines

should subtract the known root (to 10 significant digits) from the x-value

and divide this difference into the function value. In many cases the root

will be a simple one, and the new function will direct _ away from

the known root. On the other hand, the root may be a multiple root. A

multiple root is one that appears to be present repeatedly, in the following

sense: at such a root, not only does the graph of f(x) cross the x-axis, but its

slope (and perhaps the next few higher-order derivatives) also equals zero.

If the known root of your equation is a multiple root, the root is not

eliminated by merely dividing by the factor described above. For example,

the equation

f(x) = x(x – a)
3
 = 0

has a multiple root at x = a (with a multiplicity of 3). This root is not

eliminated by dividing f(x) by (x – a). But it can be eliminated by dividing

by (x – a)
3
.

Example: Use deflation to help find the roots of

60x
4
 – 944x

3
 + 3003x

2
+ 6171x – 2890 = 0.

Using Horner's method, this equation can be rewritten in the form

(((60x – 944)x + 3003)x + 6171)x – 2890 = 0.

Program a subroutine that evaluates the polynomial.

Keystrokes Display

|¥ 000- Program mode.

´ CLEAR
M

000-

´b2 001-42,21, 2

6 002– 6

0 003– 0

* 004– 20

9 005– 9

4 006– 4

4 007– 4

 Appendix D: A Detailed Look at _ 235

Keystrokes Display

- 008– 30

* 009– 20

3 010– 3

0 011– 0

0 012– 0

3 013– 3

+ 014– 40

* 015– 20

6 016– 6

1 017– 1

7 018– 7

1 019– 1

+ 020– 40

* 021– 20

2 022– 2

8 023– 8

9 024– 9

0 025– 0

- 026– 30

|n 027– 43 32

In Run mode, key in two large, negative initial estimates (such as -10 and

-20) and use _ to find the most negative root.

Keystrokes Display

|¥ Run mode.

10 “ v –10.0000
Initial estimates.

20 “ –20

´ _ 2 –1.6667 First root.

O 0 –1.6667 Stores root for deflation.

)) 4.0000 –06 Function value near zero.

236 Appendix D: A Detailed Look at _

Return to Program mode and add instructions to your subroutine to

eliminate the root just found.

Keystrokes Display

|¥ 000- Program mode.

| ‚ |

‚

026– 30 Line before n.

® 027– 34 Brings x into X-register.

l 0 028– 45 0
Divides by (x – a), where

a is known root.
- 029– 30

÷ 030– 10

Now use the same initial estimates to find the next root.

Keystrokes Display

|¥ 4.0000 -06 Run mode.

10 “ v –10.0000
Same initial estimates.

20 “ –20

´ _ 2 0.4000 Second root.

O 1 0.4000 Stores root for deflation.

)) 0.0000 Deflated function value.

Now modify your subroutine to eliminate the second root.

Keystrokes Display

|¥ 000- Program mode.

| ‚ |

‚

030– 10 Line before n.

® 031– 34 Brings x into X-register.

l 1 032– 45 1

- 033– 30 Deflation for second root.

÷ 034– 10

 Appendix D: A Detailed Look at _ 237

Again, use the same initial estimates to find the next root.

Keystrokes Display

|¥ 0.0000 Run mode.

10 “ v –10.0000
Same initial estimates.

20 “ –20

´ _ 2 8.4999 Third root.

O 2 8.4999 Stores root for deflation.

)) –1.0929 –07 Deflated function value near

zero.

Now change your subroutine to eliminate the third root.

Keystrokes Display

|¥ 000– Program mode.

| ‚ |

‚

034– 10 Line before n.

® 035– 34 Brings x into X-register.

l 2 036- 45 2

- 037– 30 Deflation for third root.

÷ 038– 10

Find the fourth root.

Keystrokes Display

|¥ –1.0929 –07

10 “ v –10.0000
Same initial estimates.

20 “ –20

´ _ 2 8.5001 Fourth root.

O 3 8.5001 Stores root for reference.

)) –0.0009 Deflated function value

near zero.

238 Appendix D: A Detailed Look at _

Using the same initial estimates each

time, you have found four roots for this

equation involving a fourth-degree

polynomial. However, the last two

roots are quite close to each other and

are actually one root (with a

multiplicity of 2). That is why the root

was not eliminated when you tried

deflation once at this root. (Round-off

error causes the original function to

have small positive and negative values

for values of x between 8.4999 and

8.5001; for x = 8.5 the function is

exactly zero.)

In general, you will not know in advance the multiplicity of the root you are

trying to eliminate. If, after you have attempted to eliminate a root, _

finds that same root again, you can proceed in a number of ways:

 Use different initial estimates with the deflated function in an

attempt to search for a different root.

 Use deflation again in an attempt to eliminate a multiple root. If

you do not know the multiplicity of the root, you may need to

repeat this a number of times.

 Examine the behavior of the deflated function at x-values near the

known root. If the function's calculated values cross the x-axis

smoothly, either another root or a greater multiplicity is indicated.

 Analyze the original function and its derivatives algebraically. It

may be possible to determine its behavior for x-values near the

known root. (A Taylor series representation, for example, may

indicate the multiplicity of a root.)

Limiting the Estimation Time

Occasionally, you may desire to limit the time used by _ to find a

root. You can use two possible techniques to do this – counting iterations

and specifying a tolerance.

 Appendix D: A Detailed Look at _ 239

Counting Iterations

While searching for a root, _ typically samples your function at least

a dozen times. Occasionally, _ may need to sample it one hundred

times or more. (However, _ will always stop by itself.) Because your

function subroutine is executed once for each estimate that is tried, it can

count and limit the number of iterations. An easy way to do this is with an

I instruction to accumulate the number of iterations in the Index

register (or other storage register).

If you store an appropriate number in the register before using _, your

subroutine can interrupt the _ algorithm when the limit is exceeded.

Specifying a Tolerance

You can shorten the time required to find a root by specifying a tolerable

inaccuracy for your function. Your subroutine should return a function

value of zero if the calculated function value is less than the specified

tolerance. This tolerance that you specify should correspond to a value that

is negligible for practical purposes or should correspond to the accuracy of

the computation. This technique eliminates the time required to define the

estimate more accurately than is justify by the problem. The example on

page 224 uses this method.)

For Advanced Information

In the HP-15C Advanced Functions Handbook, additional, advanced

techniques and applications for using _ are presented. These topics

include:

 Using _ with polynomials.

 Solving a system of equations.

 Finding local extremes of a function.

 Using _ for financial problems.

 Using _ in Complex mode.

 Solving an equation for its complex roots.

240

Appendix E

A Detailed Look at f

Section 14, Numerical Integration, presented the basic information you need

to use f This appendix discusses more intricate aspects of f that are

of interest if you use f often.

How f Works

The f algorithm calculates the integral of a function f(x) by computing a

weighted average of the function's values at many values of x (known as

sample points) within the interval of integration. The accuracy of the result

of any such sampling process depends on the number of sample points

considered: generally, the more sample points, the greater the accuracy. If

f(x) could be evaluated at an infinite number of sample points, the algorithm

could – neglecting the limitation imposed by the inaccuracy in the

calculated function f(x) – provide an exact answer.

Evaluating the function at an infinite number of sample points would take a

very long time (namely, forever). However, this is not necessary, since the

maximum accuracy of the calculated integral is limited by the accuracy of

the calculated function values. Using only a finite number of sample points,

the algorithm can calculate an integral that is as accurate as is justified

considering the inherent uncertainty in f(x).

The f algorithm at first considers only a few sample points, yielding

relatively inaccurate approximations. If these approximations are not yet as

accurate as the accuracy of f(x) would permit, the algorithm is iterated (that

is, repeated) with a larger number of sample points. These iterations

continue, using about twice as many sample points each time, until the

resulting approximation is as accurate as is justified considering the

inherent uncertainty in f(x).

 Appendix E: A Detailed Look at f 241

The uncertainty of the final approximation is a number derived from the

display format, which specifies the uncertainty for the function.
*
 At the end

of each iteration, the algorithm compares the approximation calculated

during that iteration with the approximations calculated during two previous

iterations. If the difference between any of these three approximations and

the other two is less than the uncertainty tolerable in the final

approximation, the algorithm terminates, placing the current approximation

in the X-register and its uncertainty in the Y-register.

It is extremely unlikely that the errors in each of three successive

approximations – that is, the differences between the actual integral and the

approximations – would all be larger than the disparity among the

approximations themselves. Consequently, the error in the final

approximation will be less than its uncertainty.
†
 Although we can't know the

error in the final approximation, the error is extremely unlikely to exceed

the displayed uncertainty of the approximation. In other words, the

uncertainty estimate in the Y-register is an almost certain ―upper bound‖ on

the difference between the approximation and the actual integral.

Accuracy, Uncertainty, and Calculation Time

The accuracy of an f approximation does not always change when you

increase by just one the number of digits specified in the display format,

though the uncertainty will decrease. Similarly, the time required to

calculate an integral sometimes changes when you change the display

format, but sometimes does not.

Example: The Bessel function of the first kind, of order four, can be

expressed as

  
π

dθθxθxJ
04 sin4cos

1
)(



* The relationship between the display format, the uncertainly in the function, and the uncertainty in the

approximation to its integral are discussed later in this appendix.

† Provided that f(x) does not vary rapidly, a consideration that will be discussed in more detail later in this

appendix.

242 Appendix E: A Detailed Look at f

Calculate the integral in the expression for J4 (1),

 



0

)sin4cos(d

First, switch to Program mode and key in a subroutine that evaluates the

function f(θ) = cos (4θ – sin θ).

Keystrokes Display

|¥ 000- Program mode.

´ CLEAR M 000-

´ b 0 001–42,21, 0

4 002– 4

* 003– 20

® 004– 34

[005– 23

- 006– 30

\ 007– 24

|n 008– 43 32

Now, switch to Run mode and key the limits of integration into the X- and

Y-registers. Be sure the trigonometric mode is set to Radians, and set the

display format to i 2. Finally, press ´ f0 to calculate the integral.

Keystrokes Display

|¥ Run mode.

0 v 0.0000 Keys lower limit into Y-register.

| $ 3.1416 Keys upper limit into X-register.

| R 3.1416 Sets the trigonometric mode to

Radians.

´ i 2 3.14 00 Sets display format to i 2.

´ f 0 7.79 -03 Integral approximated in i 2.

® 1.45 -03 Uncertainty of i 2

approximation.

 Appendix E: A Detailed Look at f 243

The uncertainty indicates that the displayed digits of the approximation

might not include any digits that could be considered accurate. Actually,

this approximation is more accurate than its uncertainty indicates.

Keystrokes Display

® 7.79 -03 Return approximation to

display.

´ CLEAR u

(hold) 7785820888 All 10 digits of i 2

approximation.

The actual value of this integral, correct to five significant digits, is

7.7805×10
-3

. Therefore, the error in this approximation is about

(7.7858  7.7805)×10
-3

 = 5.3×10
-6

. This error is considerably less than the

uncertainty, 1.45×10
-3

 The uncertainty is only an upper bound on the error

in the approximation; the actual error will generally be smaller.

Now calculate the integral in i 3 and compare the accuracy of the

resulting approximation to that of the i 2 approximation.

Keystrokes Display

´ i 3 7.786 –03 Changes display format

to i 3.

)) 3.142 00 Rolls down stack until

upper limit appears in X-

register.

´ f 0 7.786 –03 Integral approximated in

i 3

® 1.448 –04 Uncertainty of i 3

approximation.

® 7.786 –03 Returns approximation to

display.

´ CLEAR u

(hold) 7785820888 All 10 digits of i
3 approximation.

244 Appendix E: A Detailed Look at f

All 10 digits of the approximations in i 2 and i 3 are identical: the

accuracy of the approximation in i 3 is no better than the accuracy in

i 2 despite the fact that the uncertainty in i 3 is less than the

uncertainty in i 2. Why is this? Remember that the accuracy of any

approximation depends primarily on the number of sample points at which

the function f(x) has been evaluated. The f algorithm is iterated with

increasing numbers of sample points until the disparity among three

successive approximations is less than the uncertainty derived from the

display format. After a particular iteration, the disparity among the

approximations may already be so much less than the uncertainty that it

would still be less if the uncertainty were decreased by a factor of 10. In

such cases, if you decreased the uncertainty by specifying one more digit in

the display format, the algorithm would not have to consider additional

sample points, and the resulting approximation would be identical to the

approximation calculated with the larger uncertainty.

If you calculated the two preceding approximations on your calculator, you

may have noticed that it did not take any longer to calculate the integral in

i 3 than in i 2. This is because the time to calculate the integral of

a given function depends on the number of sample points at which the

function must be evaluated to achieve an approximation of acceptable

accuracy. For the i 3 approximation, the algorithm did not have to

consider more sample points than it did in i 2, so it did not take any

longer to calculate the integral.

Often, however, increasing the number of digits in the display format will

require evaluating the function at additional sample points, so that

calculating the integral will take more time. Now calculate the same integral

in i 4.

Keystrokes Display

´ i 4 7.7858 –03 i 4 display.

)) 3.1416 00 Rolls down stack until upper

limit appears in X-register.

´ f 0 7.7807 –03 Integral approximated in i 4.

 Appendix E: A Detailed Look at f 245

This approximation took about twice as long as the approximation in i

3 or i 2. In this case, the algorithm had to evaluate the function at

about twice as many sample points as before in order to achieve an

approximation of acceptable accuracy. Note, however, that you received a

reward for your patience: the accuracy of this approximation is better, by

almost two digits, than the accuracy of the approximation calculated using

half the number of sample points.

The preceding examples show that repeating the approximation of an

integral in a different display format sometimes will give you a more

accurate answer, but sometimes it will not. Whether or not the accuracy is

changed depends on the particular function, and generally can be

determined only by trying it.

Furthermore, if you do get a more accurate answer, it will come at the cost

of about double the calculation time. This unavoidable trade-off between

accuracy and calculation time is important to keep in mind if you are

considering decreasing the uncertainty in hopes of obtaining a more

accurate answer.

The time required to calculate the integral of a given function depends not

only on the number of digits specified in the display format, but also, to a

certain extent on the limits of integration. When the calculation of an

integral requires an excessive amount of time, the width of the interval of

integration (that is, the difference of the limits) may be too large compared

with certain features of the function being integrated. For most problems,

however, you need not be concerned about the effects of the limits of

integration on the calculation time. These conditions, as well as techniques

for dealing with such situations, will be discussed later in this appendix.

Uncertainty and the Display Format

Because of round-off error, the subroutine you write for evaluating f(x)

cannot calculate f(x) exactly, but rather calculates

),()()(ˆ 1 xxfxf 

where δ1 (x) is the uncertainty of f(x) caused by round-off error. If f(x)

relates to a physical situation, then the function you would like to integrate

is not f(x) but rather

246 Appendix E: A Detailed Look at f

)(δ)()(2 xxfxF  ,

where δ2(x) is the uncertainty associated with f(x) that is caused by the

approximation to the actual physical situation.

Since)(δ)(ˆ)(1 xxfxf  , the function you want to integrate is

)(δ)(δ)(ˆ)(21 xxxfxF 

or)(δ)(ˆ)(xxfxF  ,

where δ(x) is the net uncertainty associated with f(x).

Therefore, the integral you want is

dxxxfdxxF
b

a

b

a
)](δ)(ˆ[)( 

 
b

a

b

a
dxxdxxf)()(ˆ 

 I

where I is the approximation to 
b

a
dxxF)(and ∆ is the uncertainty

associated with the approximation. The f algorithm places the number I

in the X-register and the number ∆ in the Y-register.

The uncertainty δ(x) of)(ˆ xf , the function calculated by your subroutine, is

determined as follows. Suppose you consider three significant digits of the

function's values to be accurate, so you set the display format to i 2.

The display would then show only the accurate digits in the mantissa of a

function's values: for example, 1.23 –04.

Since the display format rounds the number in the X-register to the

number displayed, this implies that the uncertainty in the function's values

is ± 0.005×10
–4

 = ± 0.5×10
–2

×10
–4

 = ± 0.5×10
-6

. Thus, setting the display

 Appendix E: A Detailed Look at f 247

format to i n or ^ n, where n is an integer,
*
 implies that the

uncertainty in the function’s values is

)(10100.5)δ(xmnx  

)(100.5 xmn

In this formula, n is the number of digits specified in the display format and

m(x) is the exponent of the function's value at x that would appear if the

value were displayed in i display format.

The uncertainty is proportional to the factor 10
m(x)

, which represents the

magnitude of the function's value at x. Therefore, i and ^ display

formats imply an uncertainty in the function that is relative to the function's

magnitude.

Similarly, if a function value is display in • n, the rounding of the

display implies that the uncertainty in the function's values is

.100.5)δ(nx 

Since this uncertainty is independent of the function's magnitude, •

display format implies an uncertainty that is absolute.

Each time the f algorithm samples the function at a value of x, it also

derives a sample of δ(x), the uncertainty of the function's value at x. This is

calculated using the number of digits n currently specified in the display

format and (if the display format is set to i or ^) the magnitude

m(x) of the function's value at x. The number Δ, the uncertainty of the

approximation to the desired integral, is the integral δ (x):

* Although i 8 or 9 generally results in the same display as i 7, it will result in a smaller

uncertainty of a calculated integral. (The same is true for the ^ format.) A negative value for n (which

can be set by using the Index register) will also affect the uncertainty of an f calculation. The minimum

value for n that will affect uncertainty is -6. A number in RI less than -6 will be interpreted as -6.

248 Appendix E: A Detailed Look at f


b

a
dxx)δ(Δ

dx
b

a

xmn]10[0.5)(


 .

This integral is calculated using the samples of δ(x) in roughly the same

ways that the approximation to the integral of the function is calculated

using the samples of)(ˆ xf .

Because Δ is proportional to the factor 10
-n

, the uncertainty of an

approximation changes by about a factor of 10 for each digit specified in the

display format. This will generally not be exact in i or ^ display

format, however, because changing the number of digits specified may

require that the function be evaluated at different sample points, so that

δ(x) ~ 10
m(x)

 would have different values.

Note that when an integral is approximated in • display format, m(x) =

0 and so the calculated uncertainty in the approximation turns out to be

Δ = 0.5×10
-n

(b – a).

Normally you do not have to determine precisely the uncertainty in the

function. (To do so would frequently require a very complicated analysis.)

Generally, it's more convenient to use i or ^ display format if the

uncertainty in the function's values can be more easily estimated as a

relative uncertainty. On the other hand, it’s more convenient to use •

display format if the uncertainty in the function’s values can be more easily

estimated as an absolute uncertainly. • display format may be

inappropriate to use (leading to peculiar results) when you are integrating a

function whose magnitude and uncertainty have extremely small values

within the interval of integration. Likewise, i display format may be

inappropriate to use (also leading to peculiar results) if the magnitude of the

function becomes much smaller than its uncertainty. If the results of

calculating an integral seem strange, It may be more appropriate to calculate

the integral in the alternate display format.

 Appendix E: A Detailed Look at f 249

Conditions That Could Cause Incorrect Results

Although the f algorithm in the HP-15C is one of the best available, in

certain situations it – like nearly all algorithms for numerical integration –

might give you an incorrect answer. The possibility of this occurring is

extremely remote. The f algorithm has been designed to give accurate

results with almost any smooth function. Only for functions that exhibit

extremely erratic behavior is there any substantial risk of obtaining an

inaccurate answer. Such functions rarely occur in problems related to actual

physical situations; when they do, they usually can be recognized and dealt

with in a straightforward manner.

As discussed on page 240, the f algorithm samples the function f(x) at

various values of x within the interval of integration. By calculating a

weighted average of the function's values at the sample points, the

algorithm approximates the integral of f(x).

Unfortunately, since all that the algorithm knows about f(x) are its values at

the sample points, it cannot distinguish between f(x) and any other function

that agrees with f(x) at all the sample points. This situation is depicted in the

illustration on the next page, which shows (over a portion of the interval of

integration) three of the infinitely many functions whose graphs include the

finitely many sample points.

250 Appendix E: A Detailed Look at f

With this number of sample points, the algorithm will calculate the same

approximation for the integral of any of the functions shown. The actual

integrals of the functions shown with solid lines are about the same, so the

approximation will be fairly accurate if f(x) is one of these functions.

However, the actual integral of the function shown with a dashed line is

quite different from those of the others, so the current approximation will be

rather inaccurate if f(x) is this function.

The f algorithm comes to know the general behavior of the function by

sampling the function at more and more points. If a fluctuation of the

function in one region is not unlike the behavior over the rest of the interval

of integration, at some iteration the algorithm will likely detect the

fluctuation. When this happens, the number of sample points is increased

until successive iterations yield approximations that take into account the

presence of the most rapid, but characteristic, fluctuations.

For example, consider the approximation of






0
.dxxxe

 Appendix E: A Detailed Look at f 251

Since you’re evaluating this integral numerically, you might think (naively

in this case, as you'll see) that you should represent the upper limit of

integration by 10
99

 – which is virtually the largest number you can key into

the calculator. Try it and see what happens.

Key in a subroutine that evaluates the function f(x) = xe
-x

Keystrokes Display

|¥ 000- Program mode.

´ b 1 001-42,21, 1

“ 002- 1 6

' 003- 12

* 004- 20

| n 005- 43 32

Set the calculator to Run mode. Then set the display format to i 3 and

key the limits of integration into the X- and Y-registers.

Keystrokes Display

|¥ Run mode.

´i 3 Sets display format to i 3.

0 v 0.000 00 Keys lower limit into Y-

register.

‛ 99 1 99 Keys upper limit into X-

register.

´ f 1 0.000 00 Approximation of integral.

The answer returned by the calculator is clearly incorrect, since the actual

integral of f(x) = xe
-x

 from 0 to  is exactly 1. But the problem is not that

you represented  by 10
99

 since the actual integral of this function from 0 to

10
99

 is very close to 1. The reason you got an incorrect answer becomes

apparent if you look at the graph of f(x) over the interval of integration:

252 Appendix E: A Detailed Look at f

The graph is a spike very close to the origin. (Actually, to illustrate f(x) the

width of the spike has been considerably exaggerated. Shown in actual scale

over the interval of integration, the spike would be indistinguishable from

the vertical axis of the graph.) Because no sample point happened to

discover the spike, the algorithm assumed that f(x) was identically equal to

zero throughout the interval of integration. Even if you increased the

number of sample points by calculating the integral in i 9, none of the

additional sample points would discover the spike when this particular

function is integrated over this particular interval. (Better approaches to

problems such as this are mentioned at the end of the next topic, Conditions

That Prolong Calculation Time.)

You've seen how the f algorithm can give you an incorrect answer when

f(x) has a fluctuation somewhere that is very uncharacteristic of the

behavior of the function elsewhere. Fortunately, functions exhibiting such

aberrations are unusual enough that you are unlikely to have to integrate

one unknowingly.

Functions that could lead to incorrect results can be identified in simple

terms by how rapidly it and its low-order derivatives vary across the

interval of integration. Basically, the more rapid the variation in the

function or its derivatives, and the lower the order of such rapidly varying

derivatives, the less quickly will the f algorithm terminate, and the less

reliable will the resulting approximation be.

 Appendix E: A Detailed Look at f 253

Note that the rapidity of variation in the function (or its low-order

derivatives) must be determined with respect to the width of the interval of

integration. With a given number of sample points, a function f(x) that has

three fluctuations can be better characterized by its samples when these

variations are spread out over most of the interval of integration than if they

are confined to only a small fraction of the interval. (These two situations

are shown in the next two illustrations.) Considering the variations or

fluctuations as a type of oscillation in the function, the criterion of interest

is the ratio of the period of the oscillations to the width of the interval of

integration: the larger this ratio, the more quickly the algorithm will

terminate, and the more reliable will be the resulting approximation.

254 Appendix E: A Detailed Look at f

In many cases you will be familiar enough with the function you want to

integrate that you’ll know whether the function has any quick wiggles

relative to the interval of integration. If you're not familiar with the

function, and you have reason to suspect that it may cause problems, you

can quickly plot a few points by evaluating the function using the

subroutine you wrote for that purpose.

If for any reason, after obtaining an approximation to an integral, you have

reason to suspect its validity, there's a very simple procedure you can use to

verify it: subdivide the interval of integration into two or more adjacent

subintervals, integrate the function over each subinterval, then add the

resulting approximations. This causes the function to be sampled at a brand

new set of sample points, thereby more likely revealing any previously

hidden spikes. If the initial approximation was valid, it will equal the sum of

the approximations over the subintervals.

Conditions That Prolong Calculation Time

In the preceding example (page 251), you saw that the algorithm gave an

incorrect answer because it never detected the spike in the function. This

happened because the variation in the function was too quick relative to the

width of the interval of integration. If the width of the interval were smaller,

you would get the correct answer; but it would take a very long time if the

interval were still too wide.

For certain integrals such as the one in that example, calculating the integral

may be unduly prolonged because the width of the interval of integration is

too large relative to certain features of the functions being integrated.

Consider an integral where the interval of integration is wide enough to

require excessive calculation time but not so wide that it would be

calculated incorrectly. Note that because f(x) = xe
-x

 approaches zero very

quickly as x approaches , the contribution to the integral of the function at

large values of x is negligible. Therefore, you can evaluate the integral by

replacing , the upper limit of integration, by a number not so large as 10
99

,

say 10
3
.

 Appendix E: A Detailed Look at f 255

Keystrokes Display

0 v 0.000 00 Keys lower limit into

Y-register.

‛ 3 1 03 Keys upper limit into

X-register.

´ f 1 1.000 00 Approximation to integral.

® 1.824 -04 Uncertainty of

approximation.

This is the correct answer, but it took almost 60 seconds. To understand

why, compare the graph of the function over the interval of integration,

which looks about identical to that shown on page 252, to the graph of the

function between x = 0 and x = 10.

By comparing the two graphs, you can see that the function is "interesting"

only at small values of x. At greater values of x, the function is

"uninteresting," since it decreases smoothly and gradually in a very

predictable manner.

As discussed earlier, the f algorithm will sample the function with

higher densities of sample points until the disparity between successive

approximations becomes sufficiently small. In other words, the algorithm

samples the function at increasing numbers of sample points until it has

sufficient information about the function to provide an approximation that

changes insignificantly when further samples are considered.

256 Appendix E: A Detailed Look at f

If the interval of integration were (0, 10) so that the algorithm needed to

sample the function only at values where it was interesting but relatively

smooth, the sample points after the first few iterations would contribute no

new information about the behavior of the function. Therefore, only a few

iterations would be necessary before the disparity between successive

approximations became sufficiently small that the algorithm could

terminate with an approximation of a given accuracy.

On the other hand, if the interval of integration were more like the one

shown in the graph on page 252, most of the sample points would capture

the function in the region where its slope is not varying much. The few

sample points at small values of x would find that values of the function

changed appreciably from one iteration to the next. Consequently the

function would have to be evaluated at additional sample points before the

disparity between successive approximations would become sufficiently

small.

In order for the integral to be approximated with the same accuracy over

the larger interval as over the smaller interval, the density of the sample

points must be the same in the region where the function is interesting. To

achieve the same density of sample points, the total number of sample

points required over the larger interval is much greater than the number

required over the smaller interval. Consequently, several more iterations are

required over the larger interval to achieve an approximation with the same

accuracy, and therefore calculating the integral requires considerably more

time.

Because the calculation time depends on how soon a certain density of

sample points is achieved in the region where the function is interesting, the

calculation of the integral of any function will be prolonged if the interval

of integration includes mostly regions where the function is not interesting.

Fortunately, if you must calculate such an integral, you can modify the

problem so that the calculation time is considerably reduced. Two such

techniques are subdividing the interval of integration and transformation of

variables. These methods enable you to change the function or the limits of

integration so that the integrand is better behaved over the interval(s) of

integration. (These techniques are described in the HP-15C Advanced

Functions Handbook.)

 Appendix E: A Detailed Look at f 257

Obtaining the Current Approximation

to an Integral

When the calculation of an integral is requiring more time than you care to

wait, you may want to stop and display the current approximation. You can

obtain the current approximation, but not its uncertainty.

Pressing ¦ while the HP-15C is calculating an integral halts the

calculation, just as it halts the execution of a running program. When you

do so, the calculator stops at the current program line in the subroutine you

wrote for evaluating the function, and displays the result of executing the

preceding program line. Note that after you halt the calculation, the current

approximation to the integral is not the number in the X-register nor the

number in any other stack register. Just as with any program, pressing

¦ again starts the calculation from the program line at which it was

stopped.

The f algorithm updates the current approximation and stores it in the

LAST X register after evaluating the function at each new sample point. To

obtain the current approximation, therefore, simply halt the calculator,

single-step if necessary through your function subroutine until the calculator

has finished evaluating the function and updating the current

approximation. Then recall the contents of the LAST X register, which are

updated when the n instruction in the function subroutine is executed.

While the calculator is updating the current approximation, the display is

blank and does not show running. (While the calculator is executing your

function subroutine, running is displayed.) Therefore, you might avoid

having to single-step through your subroutine by halting the calculator at a

moment when the display is blank.

In summary, to obtain the current approximation to an integral, follow the

steps below.

1. Press ¦ to halt the calculator, preferably while the display is

blank.

2. When the calculator halts, switch to Program mode to check the

current program line.

 If that line contains the subroutine label, return to Run

mode and view the LAST X register (step 3).

258 Appendix E: A Detailed Look at f

 If any other program line is displayed, return to Run mode

and single-step (Â) through the program until you

reach a n instruction (keycode 43 32) or line 000 (if

there is no n). (Be sure to hold the Â key down

long enough to view the program line numbers and

keycodes.)

3. Press | K to view the current approximation. If you want to

continue calculating the final approximation, press − +

¦. This refills the stack with the current x-value and restarts

the calculator.

For Advanced Information

The HP-15C Advanced Functions Handbook explores more esoteric aspects

of f and its applications. These topics include:

 Accuracy of the function to be integrated.

 Shortening calculation time.

 Calculating difficult integrals.

 Using f in Complex mode.

259

Appendix F

Batteries

Batteries

The HP-15C is shipped with two 3 Volt CR2032 Lithium batteries. Battery

life depends on how the calculator is used. If the calculator is being used to

perform operations other than running programs, it uses much less power.

Low-Power Indication

A battery symbol () shown in the upper-left corner of the display when

the calculator is on signifies that the available battery power is running low.

When the battery symbol begins flashing, replace the battery as soon as

possible to avoid losing data.

Use only a fresh battery. Do not use rechargeable batteries.

Warning

There is the danger of explosion if the battery is

incorrectly replaced. Replace only with the same or

equivalent type recommended by the manufacturer.

Dispose of used batteries according to the manufacturer’s

instructions. Do not mutilate, puncture, or dispose of

batteries in fire. The batteries can burst or explode,

releasing hazardous chemicals. Replacement battery is a

Lithium 3V Coin Type CR2032.

Installing New Batteries

To prevent memory loss, never remove two old batteries at the same time.

Be sure to remove and replace the batteries one at a time.

260 Appendix F: Batteries

To install new batteries, use the following procedure:

1. With the calculator turned off, slide the battery cover off.

2. Remove the old battery.

3. Insert a new CR2032 lithium battery, making sure that the positive

sign (+) is facing outward.

4. Remove and insert the other battery as in steps 2 through 3. Make sure

that the positive sign (+) on each battery is facing outward.

5. Replace the battery cover.

Note: Be careful not to press any keys while the battery is

out of the calculator. If you do so, the contents of Continuous

Memory may be lost and keyboard control may be lost (that

is, the calculator may not respond to keystrokes).

6. Press = to turn on the power. If for any reason Continuous Memory

has been reset (that is, if its contents have been lost), the display will

show Pr Error. Pressing any key will clear this message.

 Appendix F: Batteries 261

Verifying Proper Operation (Self-Tests)

If it appears that the calculator will not turn on or otherwise is not operating

properly, use the following procedures to access the test system;

1) Turn the calculator off.

2) Press and HOLD the | and v keys (keep both keys held

down for the next step).

3) Press the = key (while both | and v keys are held down

from Step 2 above).

4) Release the = key.

5) Release the | and v keys.

You will be presented with a main test screen that displays the following:

1.L 2.C 3.H

 Press 1 to perform the LCD test (all LCD segments will be turned on).

Press any key to exit

 Press 2 to perform the checksum test and see the copyright messages.

Press any key to go from one screen to the next until you return to the

main test screen.

 Press 3 to perform the keyboard test. You then need to press EVERY

key on the keyboard until all the keys have been pressed at least once

(the screen will progressively turn off). You can press the keys in any

order and any number of times. Once all the keys have been pressed

and the screen is clear, press on any key to return to the test screen.

Press = to exit the test system. This will also turn the calculator off.

If the calculator detects an error at any point, it will display an error

message.

If you still experience difficulty, write or telephone Hewlett-Packard at an

address or phone number listed on the web at: www.hp.com/support.

http://www.hp.com/support

262

Function Summary and Index

= Turns the

calculator's display on

and off (page 18). It is

also used in resetting

Continuous Memory

(page 63), changing the

digit separator (page

61), and in various tests

of the calculator's

operation (pages 261).

Complex

Functions

} Real exchange

imaginary. Activates

Complex mode

(establishing an

imaginary stack) and

exchanges the real and

imaginary X-registers

(page 124).

V Used to enter

complex numbers.

Activates Complex

mode (establishing an

imaginary stack)

(page 121). Also used

with m to indirectly

dimension matrices

(page 174). (For Index

register functions, refer

to Index Register

Control keys,

page 263.)% Displays

the contents of the

imaginary X-register

while the key is held

(page 124).

F 8 Sets flag 8,

which activates

Complex mode

(page 121).

" 8 Clears flag 8,

deactivating Complex

mode (page 121).

Conversions

; Converts polar

magnitude r and angle

θ in X- and Y-registers

respectively to

rectangular x- and y-

coordinates (page 31).

For operation in

Complex mode, refer to

page 134.

: Converts x, y

rectangular coordinates

placed in X- and Y-

registers respectively to

polar magnitude r and

angle θ (page 30). For

operation in Complex

mode, refer to page 134.

h Converts

decimal hours (or

degrees) to hours,

minutes, seconds (or

degrees, minutes,

seconds) (page 27).

À Converts hours,

minutes, seconds (or

degrees, minutes,

seconds) to decimal

hours (or degrees) (page

27).

r Converts

degrees to radians

(page 27).

d Converts

radians to degrees (page

27).

Digit Entry

v Enters a copy

of number in X-register

(display) into Y-register;

used to separate multiple

number entries (pages

22, 37).

“ Change sign of

number or exponent of

10 in display (pages 19,

124).

263 Function Summary and Index

‛ Enter exponent;

next digits keyed in are

exponents of 10

(page 19).

0 through 9 digit

keys (page 22).

. Decimal point

(page 22)

Display Control

• Selects fixed

point display mode

(page 58).

i Selects scientific

notation display mode

(page 59).

^ Selects

engineering notation

display mode (page

59).

Mantissa. Pressing

´ CLEAR u
displays all 10 digits of

the number in the X-

register as long as the

u key is held

down (page 60). It also

clears any partial key

sequences

(page 19).

Hyperbolic

Functions

P[
P\
P] Compute

hyperbolic sine,

hyperbolic cosine, or

hyperbolic tangent,

respectively (page 28).

H [, H

\, H]

Compute inverse

hyperbolic sine, inverse

hyperbolic cosine, or

inverse hyperbolic

tangent, respectively

(page 28).

Index Register

Control

V Index register (RI).

Storage register for:

indirect program

execution – branching

with t and G,

looping with I and

s – indirect flag

control, and indirect

display format control

(page 107). Also used

to enter complex

numbers and activate

Complex mode (page

121).

% Indirect

operations. Used to

address another storage

register through RI for

purposes of storage,

recall, storage,

arithmetic, and program

loop control (page

107). Also used with

m to allocate

storage registers (page

215).

Logarithmic and

Exponential

Functions

N Computes natural

logarithm (page 28).

' Natural

antilogarithm. Raises e

to power of number in

display (X-register)

(page 28).

o Computes

common logarithm

(base 10) (page 28).

@ Common

antilogarithm. Raises

10 to power of number

in display (X-register)

(page 28).

Y Raises number in

Y-register to power of

264 Function Summary and Index

number in display (X-

register) (enter y, then

x). Causes the stack to

drop (page 29).

Mathematics

-+-÷
Arithmetic operators;

cause the stack to drop

(page 29).

¤ Computes square

root x (page 25).

x Computes

the square of x

(page 25).

! Calculates the

factorial (n!) of x or

Gamma function (Γ) of

(1 + x) (page 25).

∕ Computes

reciprocal (page 25).

(For matrix use, refer to

Matrix Functions, page

264.)

$ Places value of π

in display (page 24).

_ Solves for real

root of a function f(x),

with the expression for

f(x) defined by the user

in a labeled subroutine

(page 180).

f Integrate.

Computes the definite

integral of f(x), with the

expression f(x) defined

by the user in a labeled

subroutine (page 194).

Matrix Functions

m Dimensions a

matrix of a given name

{A to E, V}

(page 141).

< Designates the

matrix into which the

result of certain matrix

operations is placed

(page 148).

U User mode. Row

and column numbers in

R0 and R1 are

automatically

incremented each time

O or l {A

to E, %} is pressed

(page 144).

O and l { A

to E, %} Stores or

recalls matrix elements

using the row and

column numbers in R0

and R1 (pages 144,

146).

O | and l

| {A to E, %

} Stores or recalls

matrix elements using

the row and column

numbers in the Y- and

X-registers (page 146).

O and

l> { A

to E } Stores or

recalls matrices for the

specified matrix (pages

142, 147).

O and l

< Stores or

recalls descriptor of the

result matrix (page

148).

l m {A

through E, V}

Recalls the dimensions

of the given matrix into

the Y- (row) and X-

(column) registers

(page 142).

∕ Inverts the matrix

whose descriptor is

displayed and places

the result in the

specified result matrix.

The descriptor of the

result matrix is then

displayed (page 150).

+ - * Adds,

subtracts, or multiplies

the corresponding

elements of two

 Function Summary and Index 265

matrices or of one

matrix and a scalar.

Stores in result matrix

(page 152-155).

÷ For two matrices,

multiplies inverse of

matrix in X by matrix

in Y. For only one

matrix, if matrix in Y,

divides all elements of

matrix by scalar in X; if

matrix in X, multiplies

each element of inverse

of matrix by the scalar

in Y. Stores in result

matrix (pages 152-

155).

“ changes sign of

all elements in matrix

specified in X-register

(page 150).

> {0 through 9}

Matrix operations.

> 0 Dimensions

all matrices to 0×0

(page 143).

> 1 Sets row and

column numbers in R0

and R1 to 1 (page 143).

> 2 Complex

transform: Z
P
 to

(page 164).

> 3 inverse

complex transform.
to Z

P
 (page164).

> 4 Transpose X

to X
T
 (page 150).

> 5 Transpose

multiply: Y and X to

Y
T
X (page 154).

> 6 Calculates

residuals in result

matrix (page 159).

> 7 Calculates

row norm of matrix

specified in X-register

(page 150).

> 8 Calculates

Frobenius norm of

matrix specified in X-

register (page 150).

> 9 Calculates

determinant of matrix

specified in X-register

(also does LU

decomposition of the

matrix) (page 150).

c Transforms

matrix stored in

"partitioned form" (Z
P
)

to "complex form" (Z
C
)

(page 162).

p Transforms

matrix stored in

"complex form" (Z
C
) to

"partitioned form" (Z
P
)

(page 162).

~ T 0 T 5

T 6 Conditional

tests for matrix

descriptors in the X- or

X- and Y-registers.

~ and T 0 (x ≠

0) test the quantity in

the X-register for zero.

Matrix descriptors are

considered nonzero.

T 5 (x = y) and

T
6 (x ≠ y) test if the

descriptors in X and Y

are the same. The result

affects program

execution: skip (one

line) if false (page

174).

Number Alteration

a Yields absolute

value of number in

display (page 24).

q Leaves only

fractional portion of

number in display

(X-register) by

truncating integer

portion (page 24).

‘ Leaves only

integer portion of

number in display (X-

266 Function Summary and Index

register) by truncating

fractional portion (page

24).

& Rounds mantissa

of entire (10-digit)

number in X-register to

match display format

(page 24).

Percentage

k Percent. Computes

x% (value in display) of

number in the Y-

register (page 29).

Unlike most two-

number functions, k

does not drop the stack.

∆ Percent difference.

Computes percent of

change between number

in Y-register and

number in display

(page 30). Does not

drop the stack.

Prefix Keys

´ Pressed before a

function key to select

the gold function

printed above that key

(page 18).

| Pressed before a

function key to select

the blue function

printed below that key

(page 18).

For other prefix keys,

refer to Display Control

keys (page 263),

Storage keys (page

267), and the

Programming Summary

and Index (page 269).

CLEAR u
Cancels any prefix

keystrokes and partially

entered instructions

such as ´ i

(page 19). Also

displays the complete

10-digit mantissa of the

number in the display

(page 60).

Probability

c Combination.

Computes the number

of possible sets of y

different items taken x

at a time, and causes the

stack to drop (page 47).

(For matrix use, refer to

Matrix Functions keys,

page 264.)

p Permutation.

Computes the number

of possible different

arrangements of y

different items taken x

at a time, and causes the

stack to drop (page 47).

(For matrix use, refer to

Matrix Functions keys,

page 264.)

Stack

Manipulation

® Exchanges

contents of X- and Y-

stack registers (page

34).

X X-register

exchange. Exchanges

contents of X-register

with those of any other

named storage register.

Used with V , %,

digit, or . digit

address (page 42).

} Real exchange

imaginary. Exchanges

the contents of the real

and imaginary X-

registers and activates

Complex mode (page

124).

) Rolls down

contents of stack (page

34).

(Rolls up contents

of stack (page 34).

 Function Summary and Index 267

` Clears contents

of display (X-register)

to zero (page 21).

− In Run mode:

removes the last digit

keyed in, or clears the

display (if digit entry

has been terminated)

(page21).

Statistics

z Accumulates

numbers from X- and

Y-registers into storage

registers R2 through R7

(page 49).

w Removes numbers

in X- and Y-registers

from storage registers

R2 through R7 for

correcting z

accumulations (page

52).

’ Computes mean of

x- and y-values

accumulated by z

(page 53).

S Computes sample

standard deviations of

x- and y-values

accumulated by z
(page 53).

j Linear estimate

and correlation

coefficient. Computes

estimated value of y (ŷ)

for a given value of x

by least squares method

and places result in X-

register. Computes the

correlation coefficient,

r, of the accumulated

data and places result in

Y-register (page 55).

L Linear Regression.

Computes the y-

intercept and slope for

the linear function best

approximating the

accumulated data. The

value of the y-intercept

is placed in the X-

register; the value of the

slope is placed in the Y-

register (page 54).

Random

number. Yields a

pseudorandom number

as generated from a

seed stored using O

(page 48).

CLEAR ∑ Clears

contents of the statistics

registers (R2 to R7)

(page 49).

Storage

O Store. Stores a

copy of a number into

the storage register

specified {0 to 9, .0 to

.9, V, %} (page

42). Also used for

storage register

arithmetic: new register

contents = old register

contents { +, -,

*, ÷ } display

(page 44).

l Recall. Recalls a

copy of the number

from the storage

register specified {0 to

9, .0 to .9, V, % }

(page 42). Also used

for storage register

arithmetic: new display

= old display {+,

- *, ÷}

register contents (page

44).

CLEAR Q Clears

contents of all storage

registers to zero

(page 43).

K Recalls into

the display the number

present before the

previous operation

(page 35).

268 Function Summary and Index

Trigonometry

D Sets decimal

Degrees mode for

trigonometric

functions—indicated by

absence of GRAD or

RAD annunciator (page

26). Not operative for

complex trigonometry.

R Sets Radians

mode for trigonometric

functions—indicated by

RAD annunciator (page

26).

g Sets Grads mode

for trigonometric

functions—indicated by

GRAD annunciator

(page 26) Not operative

for complex

trigonometry.

[, \,]

Compute sine, cosine,

or tangent, respectively,

of number in display

(X-register) (page 26).

, , {, /

Compute arc sine, arc

cosine, or arc tangent,

respectively, of number

in display (X-register)

(page 26).

269

Programming Summary and Index

¥ Program/Run

mode. Sets the

calculator to Program

mode (PRGM

annunciator on) or Run

mode (PRGM

annunciator cleared)

(page 66).

W Displays current

status of calculator

memory (number of

registers dedicated to

data storage, the

common pool, and

program memory)

(page 215).

W Displays current

status of calculator

memory (number of

registers dedicated to

data storage, the

common pool, and

program memory)

(page 215).

− Back arrow. In

Program mode, deletes

displayed instruction

from program memory.

All subsequent

instructions are moved

up (page 83).

b Label. Used with

the label designations

below to denote the

start of a program

routine (page 67).

ABCÁE 0

1 2 3 4 5 6 7 8 9 .0 .1 .2

.3 .4 .5 .6 .7 .8 .9 Label

designations. When

preceded by b,

define the beginning of

a program routine

(page 67). Also used

(without b) to

initiate execution of a

specific routine

(page 69).

U Activates and

deactivates User mode,

which exchanges the

primary (white) and

gold alternate functions

(A through E) of

the top left five

functions (page 69).

User mode also affects

the matrix use of O

or l {A

throughE , %}

User mode

automatically

increments R0 (row

number) or R1 (column

number) for storage or

recall of matrix

elements (page 144).

t Go to. Used with

a label designator

(listed above) or V to

transfer the position of

the calculator to the

designated label. If it is

a program instruction,

program execution

continues. If it is not a

program instruction,

only the position

change occurs (page

90). If a negative

number is stored in RI,

t V will effect a

transfer to a line

number (page 109).

t “ nnn Go to

line number. Positions

calculator to the

existing line number

specified by nnn. Not

programmable (page

82).

G Go to subroutine.

Used with a label

designator (listed

above) or start the

execution of a given,

labeled routine. Can be

used both in a program

and from the keyboard

(in Run mode). A

n instruction

transfers execution back

to the first line

270 Programming Summary and Index

following the G

(page 101).

‚ Back step.

Moves calculator back

one or more lines in

program memory. (Also

scrolls in Program

mode.) Displays line

number and contents of

previous program line

(page 83).

Â Single step. In

Program mode: moves

calculator forward one

or more lines in

program memory. In

Run mode: displays and

executes the current

program line, then steps

to next line to be

executed (page 82).

© Pause. Halts

program execution for

about 1 second to

display contents of X-

register, then resumes

execution (page 68).

¦ Run/Stop.

Begins program

execution from current

line number in program

memory. Stops

execution if program is

running (page 68).

n Return. Causes

calculator to return to

line 000 and halt

execution (if running)

(page 68). If in a

subroutine, merely

returns to line after

G (page 101).

F Set flag (= true).

Sets designated flag (0

to 9). Flags 0 through 7

are user flags, flag 8

signifies Complex

mode, and flag 9

signifies an overflow

condition (page 92).

" Clear flag (=

false). Clears

designated flag (0 to 9)

(page 92).

? Is flag set? Tests

for designated flag. If

set, program execution

continues; If cleared,

program execution

skips one line before

continuing (page 92).

£ ~ T {0

through 9} Conditional

tests. Each test

compares value in X-

register against 0 or

value in Y-register as

indicated. If true,

calculator executes

instruction in next line

of program memory. If

false, calculator skips

one line in program

memory before

resuming execution

(page 91). ~ and

T 0, 5, and 6 are

also valid for complex

numbers and matrix

descriptors (pages 132.

174).

T 0 x ≠ 0

T 1 x > 0

T 2 x < 0

T 3 x ≥ 0

T 4 x ≤ 0

T 5 x = y

T 6 x ≠ y

T 7 x > y

T 8 x < y

T 9 x ≥ y

s Decrement and

skip if equal to or less

than. Decrements

counter value in given

register as stipulated.

Skips one program line

if new counter value is

equal to or less than

specified test value

(page 109).

I Increment and

skip if greater than.

Increments counter

value in given register

as stipulated. Skips one

program line if new

counter value is greater

than specified test value

(page 109).

271

Subject Index

Page numbers in bold type indicate primary references; page numbers in

regular type indicate secondary references.

A ___
Abbreviated key sequences, 78

Absolute value (a), 24

Allocating memory, 42, 213-219

Altering program lines, 83

Annunciators,

complex, 121

list of, 60

PRGM, 32, 66

trigonometric, 26

Antilogarithms, common and natural, 28

Arithmetic operation, 29, 37

Asymptotes, horizontal, 230

Automatic incrementing of row and column numbers, 143

B ___
Back-stepping (‚), 83

Bacterial population example, 41

Battery life, 259

Battery replacement, 260, 259-260

Bessel functions, 195, 197

Branching,

conditional, 91, 98, 177, 192

indirect, 108-109, 112-114, 115

simple, 90

C ___
C annunciator, 99, 121

Can volume and area example, 70-74

Chain calculations, 22-23, 38

Changing signs, 19

in Complex mode, 124-125

272 Subject Index

in matrices, 177

“, 19

Clearing

blinking in display, 100

complex numbers, 125-127

display, 21

memory, 63

operations, 20-21

overflow condition, 45, 61

prefix keys, 19

statistics registers, 49

Coefficient matrix, 156

Combinations function (c), 47

Common pool, 213

Complex arithmetic example, 132

Complex conjugate, forming, 125

Complex matrix,

inverting, 162, 164, 165

multiplying, 162, 164, 166

storing elements, 161

transforming, 162, 164

Complex mode, 120-121

activating, 99, 120-121, 133

deactivating, 121

mathematics functions in, 131

stack lift in, 124

Complex numbers,

clearing, 125-127

converting polar and rectangular forms, 133-135

entering, 121, 127, 128-129

storing and recalling, 130

Conditionals, indirect, 109-111, 112, 116

Conditional tests, 91, 98, 192

in Complex mode, 132

with matrix descriptors, 174

Constant matrix, 156

Constants,

calculations with, 39-42

using in arithmetic calculations, 35, 39-42

 Subject Index 273

Continuous Memory,

duration of, 62

resetting (clearing), 63

what it retains, 43, 48, 58, 61, 62

Conventions, handbook, 18

Conversions,

degrees and radians, 27

polar and rectangular coordinates, 30-31

time and angle, 26-27

Correcting accumulated statistics data, 52

Correlation coefficient, find the (j), 55-56

\,{, 26

Counters in program loops, 98, 112-114

Crocus example, 43

Cumulative calculations, 41

D ___
Data storage, 42

Data storage pool, 213-214

Debt payment example, 95

Decimal point, 22

Decimal point display, 61

Deflation, 233, 234, 237

D, 26

Determinant, 150

Digit entry, 22

in Complex mode, 121, 125, 127, 128-129

termination, 22, 36, 209

Digit separator display, 61

m, 76-77, 215-217

Disabling stack lift, 36

Display (See also X-register),

blinking, 100

clearing, 21

error messages, 61

full mantissa, 60

in Complex mode, 121

Display format, 58-59, 61

effect on ´ 200, 241, 244, 245-249

Do if True rule, 92, 192

274 Subject Index

s 109-111, 112, 116

E ___
‛, 19

Electrical circuit example, 169-171

Enabling stack lift, 36

^, 59

Engineering notation, 59

v, 12, 33-34, 36

effect on digit entry, 22, 29

effect on stack movement, 37, 41

Entering data for statistical analysis, 49

Error

conditions, 205-208

display, 61

stops, 78

Errors,

with f, 203-204

with _, 187, 192, 193

Euclidean norm (See Frobenius norm)

Exchanging the real and imaginary stacks, 124

Exponential function (See Power function)

Exponents, 19, 20

F __
´, 18

Factorial function (!), 25

Falling stone example, 14

•, 58

Fixed decimal notation, 58

Flag tests, 92, 98

Flag 8, 99

Flag 9, 100

Format, handbook, 2, 18

Fractional portion (q), 24

Frobenius norm, 150, 177

Functions, nonprogrammable, 80

Functions, one-number, 22, 25

Functions, primary and alternate, 18

Functions, two-number, 22, 29

 Subject Index 275

G ___
|, 18

Gamma function (!), 25

g, 26

G, 101

t, 90, 97, 98

t “, 82

H ___
Horner's Method, 79, 181 Hyperbolic

functions, 28

I __
Imaginary stack,

clearing the, 124

creation of, 121-123, 133

display of, 124

stack lift of, 124

Index register

arithmetic, 108, 112

display format control, 109, 114, 115, 116

exchange with X-register, 108, 112

flag control, 109, 115

loop control, 107, 109-111

storage and recall, 107, 111, 115

Indirect addressing, 106-108, 115

Initialization, 87

Instructions, 74

Integer portion (‘), 24

Integrate function (f), 194-204

accuracy of, 200-203, 240, 241-245

algorithm for, 196, 240-241, 249-251, 255-256

display format with, 245-249

execution time for, 196, 200, 244, 245, 254-256

memory usage, 204

obtaining an approximation for, 257-258

problems with erratic functions, 249-254

programmed, 203-204

recursive use of, 203

subroutines for, 194-195

276 Subject Index

uncertainty in, 202-203, 240-244, 245-249

Interchanging functions (See User mode)

Interference, radio and television, 271

Intermediate results, 22, 38

Interpolation, using j, 57

I, 109-111, 116

Iterations using I and s, 111

K ___
Keycodes, 74-75

Keying in

chain calculations, 22

exponents, 19-20

one-number functions, 22

two-number functions, 22, 29

L __
Labels, 67, 77, 90, 97

LAST X register, 35

in matrix functions, 174-176

operations saved by, 212

putting constants in, 39-40

to correct statistics data, 52

Linear equations, solving with matrices, 138, 156

Linear estimation (j), 55-56

Linear regression (L), 54

Loading the stack with constants, 39, 41

Logarithmic functions, common and natural, 28

Loop control number, 109, 116

Looping, 90, 98

Low-power indication, 62, 259

LU decomposition, 148, 155, 156, 160

Łukasiewicz, Jan, 32

M ___
Mantissa, displaying full 10 digits, 60

Matrix

complex, 160-163

copying, 149

descriptors, 139, 147, 160, in RI, 173-174

 Subject Index 277

dimensioning, 140, 142, 142, 174

dimensions, displaying, 142, 147

equation, complex, 168

memory, 140, 171

name (See Matrix descriptors)

partitioned, 161, 164

Matrix elements,

accessing individually, 145-147

displaying, 144

storing and recalling, 143-144, 147, 149, 176

Matrix functions,

using RI, 173-174

using registers, 173

arithmetic, 153

conditional, 177

inverse, 150, 154

multiplication, 154

one-matrix, 149-151

programmed, 176-177

reciprocal, 150

residual, 159

row norm, 150, 177

summary, 177-179

transpose, 150, 151, 154

Mean (’). 53

W, 215

Memory

allocation, 76, 215-217

availability, 75-77, 213, 215

configuration, initial, 75-76

distribution, 75, 213-214

limitations, 75, 77, 217

requirements for advanced functions, 218-219

requirements for programming, 218

stack (See Stack)

status display, 215

registers in, 213-215

Metal box dimensions example, 189-191

Minima, finding with _, 230

Modes, trigonometric, 26

278 Subject Index

Multiple roots, 234

N ___
Negative numbers, 19

in Complex mode, 124-125

Nested calculations, 38

Neutral operations, 211

Nonprogrammable functions, 80

Normalizing statistics data, 50

null display, 144, 149

Numerical integration, 194-204

O ___
=,

and off, 18

to reset Continuous Memory, 63

to set decimal point display, 61

Overflow condition, 45, 61, 100

P__
¥, 66, 68

Pause (©), 68

Percent difference (∆), 29

Percentage functions, 29-30

Permutations function (p), 47

Phasor notation, 133

Pi, 24

Polar coordinates, 30, in Complex mode, 133-135

Power function (y), 29

Prefix keys, 19

PRGM annunciator, 66, 82

Program

control, indirect, 107, 109-111

data entry techniques, 69-70

end, 68, 77

entering, 66-68

labels, 67, 77

loading, 66

loop counters, 109, 112-114, 116

mode, 66, 68, 86

 Subject Index 279

position, changing, 82, 86

running, 68-69

starting, 69

stops, 68, 78

Program execution, 69

after G, 101

after t, 97

after overflow, 100

after test, 92

from or through labels, 78-79

Program lines (instructions), 67, 74

deleting, 83, 86

inserting, 83, 86

Program memory, 67, 70, 75, 217-219

automatic real location, 217-218

clearing, 67

moving in, 67

Q ___
Quadratic equation, solving, 181

R ___
R0 and R1, using to access matrix elements, 143, 146, 176

R, 26

Radioisotope example, 93-94

Random number generator (#), 48

Random number storage and recall, 48

Recall arithmetic, 44

Recalling accumulated statistics data, 50

Recalling numbers (l), 42, 44, with matrices, 144, 149, 176

Reciprocal (∕), 25, with matrix, 150

Rectangular coordinates, 31, in Complex mode, 133-135

Registers, converting, 215-217

Reset Continuous Memory, 63

Residual, 159

Result matrix, 147, 148, 150, 152

Return (n), 68, 77

Returns, pending, 101, 105, 192, 204

Reverse Polish Notation, 32

} 124, 127

280 Subject Index

Rice yield example, 50-56

Ridget hurling example, 184-186, 224-226

Roll down, 34

Roll up, 34

Roots, eliminating, 233, 234, 237

Roots, meaningless, 188, 191

Rounding (&), 24

Rounding in the display, 59

Round-off errors, 52, 60, with _, 223, 237

Row norm, 150, 177

Run/Stop (¦), 68, 91

running display, 69, 147, 182

S ___
Scalar operations, 151-153

i, 58

Scientific notation, 58

Scrolling, 82

Secant line calculation example, 102

Self-tests, 261

Service information, 267-270

Shear stress example, 227-228

[, ,, 26

Sine integral example, 198-199

Single-stepping (Â), 82, 85

Skip if True rule, 110

Slope, finding the, 54

_, 180-181

accuracy, 222-226, specifying, 238

algorithm, 182, 187-188, 220-222, 230-231

conditions necessary for, 221-222

constant function value with, 187, 189

execution time, 238

illegal math routine with, 187-188

initial estimates with, 181, 188-192, 221, 233, 237

memory usage, 193

nonzero minimum of function with, 187

programmed, 192

recursive use of, 193

restrictions on, 193

 Subject Index 281

using as a conditional test, 192

using functions with discontinuities, 227

using functions with poles, 227

using functions with several roots, 233-238

with no root, 186-188, 192, 229

Square root (¤), 25

Squaring (x), 25

Stack

contents, with f, 197, 202

drop, 33, 38

lift, 33, 36, 38, 44, 209-211

manipulation functions, 33-34, in Complex mode, 131

imaginary, 120-125

used to access matrix elements, 146-147

Stack-disabling operations, 210

Stack-enabling operations, 210-211

Stack movement, 32, 33-37

in matrix functions, 174-176

with _, 181

Standard deviation (S), 53, sample vs. population, 53

Star example, 40

Statistics, accumulation of data (z), 49

Statistics, correction of accumulated data (z), 52

Statistics functions,

combinations, 47

correlation coefficient, 55

linear estimation, 55

linear regression, 54

mean, 53

permutations, 47

probability, 47

standard deviation, 53

Statistics registers, 49-50

Status indicators, 60

Storage and recall (O, l), 42, 43, 44

complex numbers, 130

direct (with V), 106, 107

indirect, 106-107, 111

matrices, 144, 149, 176

matrix elements, 143-144, 147, 149

282 Subject Index

Storage arithmetic, 43

Storage registers, 42

allocation, 42, 215-217

arithmetic, 43

clearing, 43

statistics, 42, 49

Subroutine

levels, 102, 105

limits, 102, 105

nesting example, 103

returns, 101, 105

using with _, 180-181, 192

System flags, 92, 99

T __

T-register, 32, 33

in matrix functions, 174-176

with f, 202

] /, 26

T, 91

Tracing, 82

Transpose, 150, 151, 154

Trigonometric modes in Complex mode, 121, 134

Trigonometric operations, 26

U ___

u display, 176

Uncommitted registers, 213, 215, 217

Underflow,

in any register, 61

storage register arithmetic, 45

with _, 223

User flags, 92

User mode, 69, 79, with matrices, 143, 176

V ___

Vector arithmetic, using statistics functions, 57

W __
Wrapping, 86, 90

 Subject Index 283

X ___

X exchange (X), 42

X exchange Y (®), 34

X-register, 32, 35, 37, 42, 60, 209-210

imaginary, 210, 211

in matrix functions, 141, 156, 175-176

with f, 202

with _, 181, 183, 102, 226

Y ___
y-intercept, finding, 54

Y-register, 32, 37

in matrix functions, 141,156, 175-176

with f, 202

_, 181, 183, 192, 226

Z ___

Z-register, 32

in matrix functions, 174-176

with f, 202

with _,181, 183, 192, 226

284

Product Regulatory &

Environment Information

Federal Communications Commission Notice
This equipment has been tested and found to comply with the limits for

a Class B digital device, pursuant to Part 15 of the FCC Rules. These

limits are designed to provide reasonable protection against harmful

interference in a residential installation. This equipment generates,

uses, and can radiate radio frequency energy and, if not installed and

used in accordance with the instructions, may cause harmful

interference to radio communications. However, there is no guarantee

that interference will not occur in a particular installation. If this

equipment does cause harmful interference to radio or television

reception, which can be determined by turning the equipment off and

on, the user is encouraged to try to correct the interference by one or

more of the following measures:

 Reorient or relocate the receiving antenna.

 Increase the separation between the equipment and the receiver.

 Connect the equipment into an outlet on a circuit different from

that to which the receiver is connected.

 Consult the dealer or an experienced radio or television

technician for help.

Modifications

The FCC requires the user to be notified that any changes or

modifications made to this device that are not expressly approved by

Hewlett-Packard Company may void the user’s authority to operate the

equipment.

Declaration of Conformity for Products Marked with FCC

Logo, United States Only

This device complies with Part 15 of the FCC Rules. Operation is

subject to the following two conditions: (1) this device may not cause

harmful interference, and (2) this device must accept any interference

received, including interference that may cause undesired operation.

If you have questions about the product that are not related to this declaration,

write to

Hewlett-Packard Company

P. O. Box 692000, Mail Stop 530113

Houston, TX 77269-2000

For questions regarding this FCC declaration, write to

Hewlett-Packard Company

P. O. Box 692000, Mail Stop 510101

Houston, TX 77269-2000

or call HP at 281-514-3333

To identify your product, refer to the part, series, or model number located on

the product.

Canadian Notice

This Class B digital apparatus meets all requirements of the Canadian

Interference-Causing Equipment Regulations.

Avis Canadien

Cet appareil numérique de la classe B respecte toutes les exigences du

Règlement sur le matériel brouilleur du Canada.

286

European Union Regulatory Notice

Products bearing the CE marking comply with the following EU

Directives:

• Low Voltage Directive 2006/95/EC

• EMC Directive 2004/108/EC

• Ecodesign Directive 2009/125/EC, where applicable

CE compliance of this product is valid if powered with the correct CE-

marked AC adapter provided by HP.

Compliance with these directives implies conformity to applicable

harmonized European standards (European Norms) that are listed in

the EU Declaration of Conformity issued by HP for this product or

product family and available (in English only) either within the product

documentation or at the following web site: www.hp.eu/certificates

(type the product number in the search field).

The compliance is indicated by one of the following conformity

markings placed on the product:

For non-telecommunications products and

for EU harmonized telecommunications

products, such as Bluetooth® within power

class below 10mW.

xxxx*

For EU non-harmonized telecommunications

products (If applicable, a 4-digit notified

body number is inserted between CE and !).

Please refer to the regulatory label provided on the product.

The point of contact for regulatory matters is:

Hewlett-Packard GmbH, Dept./MS: HQ-TRE, Herrenberger Strasse

140, 71034 Boeblingen, GERMANY.

http://www.hp.eu/certificates

Japanese Notice

Korean Notice

Disposal of Waste Equipment by Users in Private

Household in the European Union

This symbol on the product or on its packaging

indicates that this product must not be disposed of

with your other household waste. Instead, it is your

responsibility to dispose of your waste equipment by

handing it over to a designated collection point for

the recycling of waste electrical and electronic

equipment. The separate collection and recycling of

your waste equipment at the time of disposal will

help to conserve natural resources and ensure that it

is recycled in a manner that protects human health

and the environment. For more information about

where you can drop off your waste equipment for

recycling, please contact your local city office, your

household waste disposal service or the shop where

you purchased the product.

288

Chemical Substances

HP is committed to providing our customers with information about the

chemical substances in our products as needed to comply with legal

requirements such as REACH (Regulation EC No 1907/2006 of the

European Parliament and the Council). A chemical information report

for this product can be found at: www.hp.com/go/reach.

Perchlorate Material - special handling may apply

This calculator's Memory Backup battery may contain perchlorate and

may require special handling when recycled or disposed in

California.

http://www.hp.com/go/reach

