http://tuxgraphics.org/electronics

(o) Ratia Saches

Make and Makefiles

How it works:
Makefiles

Abstract:

"make" is besides the compiler one of the most important software development tool. This article
explains what the magic behind "make" is and how to write a Makefile.

What is make?

The command make reads a file called Makefile and analyze the rules in this file. It determines then
whether a set of commands should be executed based on the time-stamp of the target-file and the
time-stamps of the source files.

In other words think of a program as something that consists of multiple files which are compiled
together in various steps. Make will make sure that only the chain of steps will be executed where a
source file is found to be more recent than the previously compiled program file.

For very small programs one could as well write just a script (batch file) with all the compile

commands one after each other. For small program not much time is saved if unnecessary steps are
omitted. On the other hand makefiles are much easier to write than batch scripts. That's why we
use makefiles even for small programs.

How a makefile looks like

Makefiles are just text files and they look like this:

a comment starts with a hash

a variable
MCU=atmegal68

targetl: prerequisites
commandl

target2: prerequisites
command?2

Note: The commands must be indented with a TAB, not spaces!

The targets are things that can be generated (made by the compiler) or they are just names for
things to do.

If you type
make targetl

Then "make" will look for a things that are listed in prerequisites of that target and if needed
generate them via other targets. Once it has all the prerequisites (=files) available it will run
commandl.

As you can see the execution in Makefiles follows a chain of possibly nested commands because the
prerequisites must first be generated before a command specified under a target can be executed.

It is therefore easy to write messy "generic" makefiles that nobody can really follow and
understand. Those messy makefiles are the main reason why "make" is a bit magic. I recommend to
write small and easy to read makefile.

A real example

MCU=atmega8
CFLAGS=-g -mmcu=$ (MCU) -Wall -Wstrict-prototypes -Os -mcall-prologues
#
halloweenled.hex : halloweenled.elf
avr-size halloweenled.elf
avr-objcopy -R .eeprom -O ihex halloweenled.elf halloweenled.hex

halloweenled.elf : halloweenled.o
avr-gcc $(CFLAGS) -o halloweenled.elf -Wl,-Map,halloweenled.map halloweenled.o

halloweenled.o : halloweenled.c
avr-gcc $ (CFLAGS) -Os -c halloweenled.c
#

load: halloweenled.hex
avrdude -p m8 -c stk500v2 -e -U flash:w:halloweenled.hex

In this very basic example halloweenled.hex is made from halloweenled.elf which in turn is made
from halloweenled.o and that is made from halloweenled.c.

To get this make-target to execute one has to type

make halloweenled.hex

Since it is the top most make-target in the file one can also just type
make

without any arguments.

Make keeps track of which files need to be re-done. In this case it is more or less obvious but we
can test this by running make halloweenled.hex after we have already compiled the software and
not changed anything. The answer will be:

make halloweenled.hex
make: “halloweenled.hex' is up to date.

In other words make knows that there is nothing to be done.

There is a second make target called "load". This target does not generate any file called "load". It
is barely a name for the task. Since there will never be a file generated called "load" you can run
make load

as often as you like without getting a message about "load being up to date". The purpose of this
make load is to load the software into the microcontroller chip. You may program a whole set of
chips one after the other and every time you just type make load.

An interesting aspect of even this simple makefile which compiles really just a single file is that you
can run make load without running first make halloweenled.hex. The make target "load" has as a
prerequisite the file halloweenled.hex. In other words if halloweenled.hex is not up to date then
make will generate it as per the rules for halloweenled.hex.

The command
make
compiles halloweenled.hex.

make load

Compiles halloweenled.hex and runs avrdude to load the code into the microcontroller. If
halloweenled.hex was already compiled before then it will be just loaded without compiling again.
If there is an error during compilation then it will stop there and avrdude will not be called.

"make" is very well designed for the task of compiling and loading software.

Help Bill help

People with a Mac or a Linux PC are usually quite happy to use the command line because it works
really well. You write a bit of code and compile it. You add more and you compile and load it. After
a while one has to just press arrow up to repeat the previous commands. Very easy.

To do the same thing in windows is unfortunately not as easy. One feels totally handicapped on the
command line. Fortunately there is the possibility to write a batch file and set the environment

such that make and all the commands that the makefile uses will run. You can then just save this
batch file in the same directory as the makefile. To run it you open the file manger and double click
on the batch file.

If you have an IDE for C or C++ then you can just configure it to execute this batch file at
compilation time.

REM *** you need to edit this file and adapt it to your WinAVR
REM *** installation. E.g replace c:\avrgcc by c:\WinAVR-20090313
@echo -—-—----- begin winmake.bat ---——----

set AVR=c:\avrgcc

set CC=avr-gcc

set PATH=c:\avrgcc\bin;c:\avrgcc\utils\bin

make -f Makefile

@echo -------- end --------

pause

A similar batch file can be used for loading of the software:

@echo -—------- begin winload.bat --------
set AVR=c:\avrgcc

set CC=avr-gcc

set PATH=c:\avrgcc\bin;c:\avrgcc\utils\bin
make -f Makefile load

@echo -—-—----- end --—------

pause

Adapting existing Makefiles

Compiling the software works usually as one has to just have avr-gcc and the make command in the
search path (unix: export PATH=$ {PATH}:/where/it/is and Windows: set PATH=c:\where\it\is;
c:\other\location). The loading of the software is a bit more complicated.

1. There are different types of programmers (different hardware + different software)
2. Even if the same programmer hardware (avrusb500) and the same programmer software
(avrdude) is used there are still differences dependent on the operating system used.

You will therefore generally have to change the part of the makefile that is responsible for the
loading of the software. Here are a few examples:

Linux:
avrdude -P /dev/ttyUSBO -p ml68 -c stk500v2 -e -U flash:w:main.hex

Mac:
avrdude -P /dev/tty.usbserial-A9006MOb -p ml168 -c stk500v2 -e -U flash:w:main.hex

Windows:
avrdude -P COM5 -p ml68 -c stk500v2 -e -U flash:w:main.hex

In all three cases the same programmer hardware, a stk500v2 compatible programmer such as the
avrusb500, is used. We program an atmegal68 chip (option -p m168). The file that we want to load
is main.hex.

The most obvious difference between the operating systems is the name of the serial device and you
will normally have to adapt it. Under windows it might be COM3, COM4, COMS5, ... it depends on
how many other devices you already had. Macs name it /dev/tty.usbserial-.... followed by some
random name. Linux is the most predictable. The number ttyUSBO or ttyUSB1 depends on which
device was inserted first and how many there are. Normally it's ttyUSBO.

It is also possible to configure the serial device in a system wide configuration file called
avrdude.conf. If it is specified there then you will not need the -P option. If you specify -P option
then you overwrite whatever is configured in avrdude.conf. In other words if you have a "good
avrdude.conf" then you can delete the "-P ..." part from the Makefile.

Inserted into a Makefile the section for loading software will then look like this:

load: main.hex
avrdude -P /dev/ttyUSBO -p ml68 -c stk500v2 -e -U flash:w:main.hex

To execute this part you would run
make load

We will make it!

References

e The tuxgraphics online shop: shop.tuxgraphics.org

© Guido Socher, tuxgraphics.org

2009-12-30, generated by tuxgrparser version 2.57

